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ABSTRACT

We propose a new design for a Translation Validation (TV) system

geared towards practical use with modern optimizing compilers,

such as LLVM. Unlike existing TV systems, which are custom-

tailored for a particular sequence of transformations and a specific,

common language for input and output programs, our design clearly

separates the transformation-specific components from the rest of

the system, and generalizes the transformation-independent com-

ponents. Specifically, we present Keq, the first program equivalence

checker that is parametric to the input and output language seman-

tics and has no dependence on the transformation between the

input and output programs. The Keq algorithm is based on a rigor-

ous formalization, namely cut-bisimulation, and is proven correct.

We have prototyped a TV system for the Instruction Selection pass

of LLVM, being able to automatically prove equivalence for transla-

tions from LLVM IR to the MachineIR used in compiling to x86-64.

This transformation uses different input and output languages, and

as such has not been previously addressed by the state of the art.

An experimental evaluation shows that Keq successfully proves

correct the translation of over 90% of 4732 supported functions in

GCC from SPEC 2006.
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1 INTRODUCTION

Modern optimizing compilers such as LLVM [19] and GCC [11]

have evolved into intricate systems with huge code bases and, con-

sequently, uncaught bugs that make it into mature releases [38].

The reality of compilation bugs combined with lack of any formal

correctness guarantee for the compilation process harms software

development and limits the guarantees other software systems can

provide. For example, most iOS applications and all of the watchOS

and tvOS applications are shipped by developers to the Apple Store

as LLVM bitcode [7, 14] and they are compiled to machine code

on Apple’s servers, thus allowing the possibility of unintended

behaviors introduced to the binary due to compilation errors [42].

More generally, other systems that aim for formal guarantees of

correctness, such as sel4 [35], also depend on provable correctness

of translations from source to binary code. These circumstances

have motivated broad interest in compilation verification: providing

a formal guarantee that a compilation of a program is correct. In

this work, we attack the problem of compilation verification not

only theoretically, as an instance of program equivalence, but from

a practical standpoint as well: we are after a solution appropriate

for real-world optimizing compilers.

Translation Validation (TV) [30] is a compilation verification

technique that aims to prove correctness of a single instance of

compilation, by considering only the specific input and output pro-

grams. TV techniques are well-suited to the compilation verification

problem because they can be composed to validate a sequence of

compilation steps, they can be retrofitted to existing production

compilers, and they can be maintained independently from the

compiler itself.

The basic components of a TV system are as follows:

• A formal notion of program equivalence.
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• A verification condition (VC) generator that generates a suffi-

cient set of obligations to be discharged to prove equivalence.

• A proof system that accepts the verification conditions, gen-

erates a machine-checkable equivalence proof, and checks

the proof for correctness.

There is a rich literature of successful TV systems for compilation

verification (see Section 6). The main limitation of these systems

is that each of them is custom-tailored for a particular sequence

of transformations and a specific, common intermediate language

for input and output programs. For example, Necula’s work on

GCC [29] is limited to the Register Transfer Language (RTL), and

does not apply to the transformations on the higher-level GIM-

PLE representation [10]. Moreover, none of these previous systems

would be able to directly verify a key phase such as Instruction

Selection in LLVM, which converts between two different IRs. The

best effort has been to translate both input and output programs to

a third, common internal representation as a preliminary step [35],

which introduces two new unverified language translators in order

to verify the original translator.

In this work, we present a TV system that consists of modular

components designed to be independent of the various transforma-

tions and languages found in compilers. Specifically, the key insight

underlying our work is that two of the three TV system compo-

nents mentioned above can be generalized to be transformation-

and language-independent: the formal notion of equivalence, and

the proof system.

For our proof system, we design a program equivalence checker,

Keq, that does not depend on the transformation pass at hand and

the input/output language pair. Keq takes as input the operational

semantics of the input and output languages, as well as the VC

for a transformation sequence. The operational semantics of each

language must be defined once, and then can be used with Keq for

any transformation that involves these languages. The VC used by

Keq is a set of pairs of relevant program states, which we call syn-

chronization points, Moreover, the input and output languages can

be completely different, as long as programs can be related using

the VC. In this work, we showcase the power of these properties by

using Keq in a prototype TV system for the Instruction Selection

phase of LLVM, a sophisticated phase that translates LLVM IR [22]

to Machine IR [24] representing the x86-64 instruction set. More-

over, in our ongoing work (not part of this paper), we are applying

Keq unchanged to validate the register allocation phase of LLVM,

with a VC generator that treats the allocator completely as a black

box (i.e., has no knowledge of the allocation algorithm), and we

plan to apply Keq to LLVM-to-LLVM transformations in future.

We formalize theKeq algorithm and prove it correct by defining a

formal notion of equivalence that enables a language-parametric

proof system. In particular, we present a new formalization of

program equivalence, namely cut-bisimulation, that generalizes

different weak bisimulation variants that have been used in existing

TV systems. An equivalence proof in Keq involves proving that a

given VC is a cut-bisimulation for the input and output programs.

As we will discuss in Section 2, cut-bisimulation is better-suited

for program equivalence proofs because it offers a formal way to

address the need for flexible synchronization points and, when

unsigned arithm_seq_sum(unsigned a0, unsigned d,

unsigned n) {

unsigned s = a0, a = a0, i;

for (i = 1; i < n; ++i) {

a = a + d;

s = s + a;

}

return s;

}

Figure 1: Function to compute the sum of the first n elements

of an arithmetic sequence with first element a0 and step d.

needed, to abstract away the complicated correspondence between

program states in different languages.

As an example, consider the simple C code shown in Figure 1.

Figure 2 shows the mid-level internal representation (IR) of this

code in the LLVM Compiler Infrastructure (the LLVM IR, or simply,

LLVM), as well as the output of the instruction selection (ISel)

phase of the compiler when compiling for x86-64. This phase is

the primary language translation step beyond the front-end: it

translates LLVM IR to a low-level IR called Machine IR representing

a particular target instruction set (ISA). The Machine IR for x86-64

keeps some high-level abstractions such as an unlimited number of

virtual registers and support for SSA virtual registers, alongwith the

x86-64 ISA opcodes; we call this output language łVirtual x86ž. In

Figure 3, points {𝑝0, 𝑝1, 𝑝2, 𝑝3} are corresponding synchronization

points where state comparisons are valid for live values between the

LLVM IR and the machine code generated by the ISel phase. Using

these points and appropriate LLVM IR and Virtual x86 semantics

definitions, Keq proves that the synchronization point relation is a

cut-bisimulation and hence the two programs are equivalent (see

Section 3 for more details).

Finally, the verification condition generator has to take into

account the specifics of the transformation in question (either using

compiler-generated hints or heuristics inspired by the transforma-

tion’s effect in input programs). For this reason, it is not clear how

to effectively generalize it, although there have been examples in

prior work of verification condition generators able to work with a

wider range of transformations (see Section 6).

We have implementedKeq as a tool within theK framework [32].

Keq acceptsK formal operational semantic definitions for the input

and output languages. In order to use Keq for TV of Instruction

Selection in LLVM, we have developed K semantic definitions of a

subset of the LLVM and Virtual x86 languages. To generate synchro-

nization points for Instruction Selection, we have also developed

a verification condition generator as a python script that relies on

a minimal hint generator added to the LLVM compiler. The hint

generation code that we needed to add to LLVM contains less than

500 lines of C++. For comparison, the Instruction Selection pass

implementation uses more than 140,000 lines of code. All the above

constitute a prototype TV system for the Instruction Selection pass

of the LLVM compiler infrastructure.

We evaluate our prototype on 4732 functions of the GCC SPEC

2006 benchmark that are covered by the fragment of LLVM and

x86 language semantics we developed. We correctly validate the
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define i32 @arithm_seq_sum(i32 %a0 , i32 %d, i32 %n) {

entry: ; p0

br label %for.cond

for.cond: ; p1, p2

%s.0 = phi i32 [ %a0 , %entry ], [ %add1 , %for.inc ]

%a.0 = phi i32 [ %a0 , %entry ], [ %add , %for.inc ]

%i.0 = phi i32 [ 1, %entry ], [ %inc , %for.inc ]

%cmp = icmp ult i32 %i.0, %n

br i1 %cmp , label %for.body , label %for.end

for.body:

%add = add i32 %a.0, %d

%add1 = add i32 %s.0, %add

br label %for.inc

for.inc:

%inc = add i32 %i.0, 1

br label %for.cond

for.end: ; p3

ret i32 %s.0

}

arithm_seq_sum:

.LBB0: ; p0

%vr8_32 = COPY edx

%vr7_32 = COPY esi

%vr6_32 = COPY edi

%vr9_32 = mov 1

jmp .LBB1

.LBB1: ; p1, p2

%vr0_32 = PHI %vr6_32 , .LBB0 , %vr4_32 , .LBB3

%vr1_32 = PHI %vr6_32 , .LBB0 , %vr3_32 , .LBB3

%vr2_32 = PHI %vr9_32 , .LBB0 , %vr5_32 , .LBB3

%vr10_32 = sub %vr2_32 , %vr8_32

jae .LBB4

jmp .LBB2

.LBB2:

%vr3_32 = add %vr1_32 , %vr7_32

%vr4_32 = add %vr0_32 , %vr3_32

jmp .LBB3

.LBB3:

%vr5_32 = inc %vr2_32

jmp .LBB1

.LBB4:

eax = COPY %vr0_32

; p3

ret

(a) LLVM IR (b) Virtual x86

Figure 2: The arithmetic sequence sum in LLVM IR and Virtual x86, as produced by Instruction Selection at optimization level

O0. Comments in red show the synchronization points generated by our prototype.

Sync

Point

Prev BB

(LLVM)

Prev BB

(Vx86)

Equality Constraints

𝑝0 - - %a.0 = edi, %d = esi,

%n = edx,

𝑝1 %entry .LBB0 %d = %vr7_32, 1 = %vr9_32,

%a.0 = %vr6_32, %n = %vr8_32,

𝑝2 %for.inc .LBB3 %add = %vr3_32, %n = %vr8_32,

%add1 = %vr5_32, %d = %vr7_32,

%inc = %vr5_32

𝑝3

(exit)

- - %s.0 = eax

Figure 3: Synchronization points for the translation of the

arithmetic sequence sum in Figure 2. A more detailed expla-

nation will be given in Section 3.

translation of 91.52% of the supported functions in GCC, i.e., 4331 /

4732 functions. Additionally, we reintroduce two real Instruction Se-

lection bugs to the code base and show that the buggy compilations

could not pass our system.

In short, this work presents the first TV system that clearly sep-

arates the transformation-specific components (i.e., VC generators)

from the transformation-independent ones (i.e., proof system and

language semantics), and generalizes the latter to be parameterized

to different languages. This way, our design reduces the amount

of work needed per transformation and (intermediate) language:

a semantic definition of every language found in the compilation

path and one or more verification condition generators that use

transformation-specific information. In summary, the main contri-

butions of this paper are:

• Keq, a new tool for checking program equivalence that ac-

cepts the operational semantics of the input and output lan-

guages as parameters, and is independent of the transfor-

mation used to generate the output. This is the first pro-

gram equivalence checking tool known to the authors that

is language-parametric instead of containing hard-coded

language semantics as is the norm in the literature.

• A new rigorous formalization of program equivalence, called

cut-bisimulation, that generalizes weak bisimulation variants

that have been traditionally used in different TV systems.

We use cut-bisimulation as the basis of the Keq equivalence

checking algorithm, and provide a correctness proof for that

algorithm.

• A prototype of a Translation Validation system for the In-

struction Selection pass of the LLVM compiler infrastructure,

able to automatically prove equivalence for translations from

LLVM IR when compiling to the x86-64 instruction set. This

is a mature, sophisticated translation phase of a production

compiler. Moreover this transformation uses different input
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and output languages, and as such has not been previously

addressed by the state of the art.

2 FORMALIZING PROGRAM EQUIVALENCE

Intuitively, two (possibly non-terminating) programs are łequiv-

alentž when, given the same input, they reach the same relevant

states in effectively the same order. Similarly, a program 𝐴 łrefinesž

another program 𝐵 when 𝐴 contains no new behaviors that do not

exist in 𝐵. Strong bisimulation [34] is a formal way of expressing

this requirement: two programs are bisimilar, and hence equiv-

alent1, when they reach only equivalent states throughout their

execution. Equivalence proofs based on strong bisimulation then

require the existence of a relation of equivalent states that covers all

possible states of both programs. This is too strong of a requirement

for practical program equivalence proof systems.

Consider the simple program transformation example shown in

Figure 4(a), commonly performed by compilers as part of partial

redundancy elimination. The seemingly equivalent two programs

are still not strongly bisimilar, mainly because the intermediate

states (𝑃1 and 𝑄1) are not łsimilarž. Weaker variants, such as stut-

tering or branching bisimulation [34], could be used to prove their

equivalence, since they are flexible to admit the irrelevant interme-

diate states. Figure 4(b) depicts a stuttering bisimulation relation

shown as both black and red dotted lines, where the transitions

𝑃0 → 𝑃1 and 𝑄1 → 𝑄2 are considered łstutteringž transitions.2

Note that, however, identifying the stuttering transitions are non-

trivial. Indeed, the irrelevant intermediate states 𝑃1 and 𝑄1 have

the potential to stutter with all adjacent states. As such, there exist

many candidate stuttering transitions (which are 𝑃0 → 𝑃1, 𝑃1 → 𝑃2,

𝑃1 → 𝑃3, 𝑄0 → 𝑄1, and 𝑄1 → 𝑄2 in this example) and identifying

the appropriate ones among many candidates is not straightfor-

ward. The problem of identifying stuttering transitions becomes

apparent when we consider the witness-based translation valida-

tion approach [28], in which the candidate relation is generated by

the compiler as a łwitnessž for the correctness of the transforma-

tion, and proving the equivalence is reduced to checking that the

generated relation is a (bi)simulation. However, it is not easy for the

compiler to identify stuttering transitions which are not directly

related to the internal information used in the compiler transforma-

tion. Thus, the stuttering transitions should be inferred separately,

which incurs additional overhead in proving equivalence.3

Ideally, we want a bisimulation variant that allows us to relate

only the relevant states at which the two programs actually match

each other, e.g., at the start of corresponding functions or basic

blocks, at the loop headers, etc., without ever considering irrelevant

states at all. We also want to be able to control the granularity of

these points depending on the transformation at hand. We call such

pairs of relevant states synchronization points. For each program,

we call the set of states related through a synchronization point

with a state of the other program a cut. The intuition for the cut of a

program is that the states in the cut suffice as observation points of

1For simplicity, we say łprogram equivalencež and łbisimulationž, but our results and
algorithms also support łprogram refinementž and łsimulationž.
2More precisely, it is a stuttering bisimulation over the Kripke structure where the
labeling function 𝐿 satisfies 𝐿 (𝑃0) = 𝐿 (𝑃1) and 𝐿 (𝑄1) = 𝐿 (𝑄2) .
3The time complexity of the best known algorithm for inferring stuttering bisimulation
is𝑂 (𝑚 log𝑛) where𝑚 is the number of transitions and𝑛 is the number of states [12].

P: x = 0; if (*) { y = 1; } else { x = 1; }

Q: if (*) { x = 0; y = 1; } else { x = 1; }

(a)

x=0

x=1y=1

x=0

x=1

y=1

P1

P2
P3

P0 Q0

Q1

Q2 Q3

(b)

Figure 4: Program transformation example (as part of partial

redundancy elimination), a stuttering bisimulation relation

(both black and red dotted lines), and a cut-bisimulation re-

lation (only black dotted lines). The if(*) statement denotes

the non-deterministic branching operation.

the program behavior, that is, nothing relevant can happen which is

not witnessed by a cut state. Then we can define bisimulations only

between cut states; we call these cut-bisimulations. For the example

in Figure 4, simply the synchronization relations, indicated by only

black dotted lines, define a cut-bisimulation relation and thus prove

equivalence.

In order for cut-bisimulations to correctly capture program equiv-

alence, two conditions must be satisfied. First, there must be enough

cut states for the two programs so that no relevant behavior of one

program can pass unsynchronized with a behavior of the other

program. This implies, in particular, that each final state must be

in the cut. It also implies that each infinite execution must contain

infinitely many cut states, because otherwise one of the programs

may not terminate while the other terminates.

Second, any two states related by a cut-bisimulation must be

compatible. For example, if we want to show that the LLVM and

Virtual x86 programs in Figure 2 are equivalent, then the two fi-

nal states at synchronization point 𝑝3 must satisfy the condition

that the values held by the LLVM local variable %s.0 and by the

x86-64 register eax are łthe samež. What it precisely means for two

values in different languages to be the same is not trivial, due to

different representations (e.g., big-endian vs little-endian), different

memory layouts (physically same location may point to different

values, or contain garbage that has not been collected yet), etc. Also,

state compatibility may require to check if environment variables,

input/output buffers, etc., are also łthe samež. Moreover, states cor-

responding to undefined behaviors (e.g., division by zero) may or

may not be desired to be compatible, e.g., when compiler optimiza-

tions that may improve performance by assume such behaviors are

illegal and so cannot occur. We found it awkward to encode such

complex state compatibility abstractions as labels on transitions, as

the existing notions of bisimulation require. Instead, we parame-

terize our theoretical results, algorithms and implementation with

a binary relation on states A , which we call an acceptability (or

compatibility or indistinguishability) relation.
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We next give intuitive but informal definitions for cut and cut-

bisimilarity, as well as the sketch for a theorem that allows us to

use cut-bisimilarity for program equivalence. Section 7 provides a

rigorous formalization for these definitions and theorems as well

as formal proofs.

Definition 2.1 (Cut). Given a program 𝑃 , a set of states 𝐶 is

a cut for 𝑃 if (a) the start state belongs to 𝐶 (i.e., is a cut state), (b)

any terminating execution of 𝑃 terminates in 𝐶 , and (c) any non-

terminating execution of 𝑃 goes through 𝐶 infinitely often, in every

finite number of steps.

Definition 2.2 (Cut-Bisimilarity). A relation between states

of two programs is a cut-bisimulation if and only if (a) all related

states are cut states, and (b) starting from a pair of related states, the

programs always reach another pair of related cut states by going

through only non-cut states. If such relation exists for two prorgams,

they are cut-bisimilar.

Theorem 2.3 (Cut-Bisimilarity and Program Eqivalence).

Two cut-bisimilar programs, where all the related (cut) states in the

corresponding cut-bisimulation are also related in the acceptablility

relation, are equivalent.

3 LANGUAGE-INDEPENDENT EQUIVALENCE
CHECKING ALGORITHM AND
IMPLEMENTATION IN K

We implemented a language-independent equivalence checking

tool on top of the K framework [32]. K provides a language for

defining operational semantics of programming languages, and a

series of generic tools that take one or more language semantics as

input and operate on programs in those languages. We developed

a new tool, Keq, which takes as input two language semantics

and two programs, one in each language, along with a (symbolic)

synchronization relation, and checks whether the two programs

are indeed equivalent with the synchronization relation as witness.

Note that checking program equivalence in Turing-complete

languages is equivalent to checking the totality of a Turing machine

(whether it terminates on all inputs), which is undecidable [31]. The

best we can do is to find techniques and algorithms that work well

enough in practice. Theoroem 2.3 suggests such a technique: find a

(witness) relation P and show that it is a cut-bisimulation. While

finding such a relation is hard in general, it is easier to check if

a given relation, for example one produced by an instrumented

compiler (see Section 4.5), is a cut-bisimulation.

Our Keq implementation follows the model of the theoretical

Algorithm 1. Function main essentially checks whether P is a cut-

bisimulation: for each pair (𝑝1, 𝑝2) ∈ P, if 𝑝1 {1 𝑝 ′1 for some 𝑝 ′1,

then there should exist 𝑝 ′2 with 𝑝2 {2 𝑝
′
2 such that 𝑝 ′1 P 𝑝

′
2; and the

converse. It first gets the cut-successors of 𝑝𝑖 (at line 7), and checks

whether each pair of the successors is related in P (line 9). The pairs

found to be related in P are marked in black (line 10), while the

others remain in red. If all of the successors are in black, it returns

true (line 12). Note that the algorithm can also be used for checking

whether P is a cut-simulation, by simply considering only 𝑁1 in the

line 12, i.e., replacing the if-condition with∀𝑛 ∈ 𝑁1 . 𝑛.color = black.

The correctness proof of Algorithm 1 is provided in Section 8.

Data: 𝑇𝑖 = (𝑆𝑖 , 𝜉𝑖 ,→𝑖 ,𝐶𝑖 ); P ⊆ 𝐶1 ×𝐶2;

1 Function main():

2 foreach (𝑝1, 𝑝2) ∈ P do // P

3 if check(𝑝1, 𝑝2) = false then

4 return false;

5 return true;

6 Function check(𝑝1, 𝑝2):

7 𝑁1 ← next1 (𝑝1); 𝑁2 ← next2 (𝑝2);

8 foreach (𝑛1, 𝑛2) ∈ 𝑁1 × 𝑁2 do

9 if (𝑛1, 𝑛2) ∈ P then // J(𝑛1, 𝑛2)K ⊆ JPK

10 𝑛1 .color← black; 𝑛2 .color← black;

11 if ∀𝑛 ∈ 𝑁1 ∪ 𝑁2 . 𝑛.color = black then

12 return true;

13 return false

14 // Returns cut-successors of 𝑛

15 Function next𝑖(𝑛):

16 𝑁 ← {𝑛}; 𝑅𝑒𝑡 ← ∅;

17 while 𝑁 is not empty do

18 choose 𝑛 from 𝑁 ; 𝑁 ← 𝑁 \ {𝑛};

19 𝑁 ′ ← {𝑛′ | 𝑛 →𝑖 𝑛′}; // →𝑖

20 foreach 𝑛′ ∈ 𝑁 ′ do

21 if 𝑛′ ∈ 𝐶𝑖 then // J𝑛′K ⊆ J𝐶𝑖K

22 𝑛′.color← red;

23 𝑅𝑒𝑡 ← 𝑅𝑒𝑡 ∪ {𝑛′};

24 else

25 𝑁 ← 𝑁 ∪ {𝑛′};

26 return 𝑅𝑒𝑡 ;

Algorithm 1: Equivalence checking algorithm. For checking

cut-simulation, replace 𝑁1∪𝑁2 with 𝑁1 at line 11. As given, the

algorithm works with concrete data and thus is not practical.

Replace boxed expressions with their grayed variants to the

right for a practical, symbolic algorithm, as implemented in

Keq.

Symbolic Implementation of Algorithm 1. Due to its concrete (as

opposed to symbolic) nature, Algorithm 1 may not terminate when

P is infinite. For example, P may include all the synchronization

points at the beginning of the main loop in a reactive system im-

plementation. Nevertheless, in practice it is often the case that we

can over-approximate infinite sets symbolically. For example, we

can use a logical formula 𝜑 to describe a symbolic state, which

denotes a potentially infinite set J𝜑K of concrete states that sat-

isfy it. Then we may be able to describe the sets of states 𝑆𝑖 and

𝐶𝑖 of the cut transition systems 𝑇𝑖 (𝑖 ∈ {1, 2}) with finite sets 𝑆𝑖
and 𝐶𝑖 , respectively, of symbolic states. Similarly, symbolic pair

(𝜑, 𝜑 ′) can describe infinite sets J(𝜑, 𝜑 ′)K of pairs of states in the

two transition systems, related through free/symbolic variables that

𝜑 and 𝜑 ′ can share. Then we may also be able to describe P as a
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finite set P of pairs of symbolic states. If all these are possible, then

Algorithm 1 can be modified by replacing the boxed expressions

with their symbolic variants (in grey boxes); and 𝑛, 𝑛′, 𝑛1, 𝑛2, 𝑝1,

𝑝2, etc., are symbolic now.

Given an operational semantics of a programming language,

K provides us with an API to calculate symbolic successors of

symbolic program configurations. This allows us to conveniently

implement the symbolic→𝑖 transitions. Also, K is fully integrated

with the Z3 solver [9], allowing us to implement the set inclusion

checks, i.e., J(𝑛1, 𝑛2)K ⊆ J𝑃K (at line 9) and J𝑛′K ⊆ J𝐶𝑖K (at line 21),
by requesting Z3 to solve the implications of the corresponding

formulae. (See below.)

Optimizing SMT Queries. Before checking the symbolic set inclu-

sion J(𝑛1, 𝑛2)K ⊆ J𝑃K, we check first the equivalence between the

path conditions of the two symbolic states 𝑛1 and 𝑛2, since the SMT

query for checking the set inclusion becomes much simpler when

the two path conditions are equivalent.4 Let the path conditions

of 𝑛1 and 𝑛2 be 𝜑1 and 𝜑2, respectively. Then, we need to prove

𝜑1 ⇒ 𝜑2 and 𝜑2 ⇒ 𝜑1 to prove the path condition equivalence. For

proving 𝜑1 ⇒ 𝜑2, we ask Z3 to prove that its negation is unsatisfi-

able, that is, that 𝜑1 ∧ ¬𝜑2 is unsatisfiable. (Similarly for proving

𝜑2 ⇒ 𝜑1 as well.) However, we found that Z3 performs poorly for

proving the unsatisfiability of 𝜑1 ∧ ¬𝜑2, especially because of the

negation applied to 𝜑2 that involves existential quantifiers.

To improve the performance of Z3 solving, we devised the fol-

lowing optimization that is applicable when the underlying tran-

sition systems are deterministic. Suppose that 𝑁1 = {𝑛1, · · · } and

𝑁2 = {𝑛2, 𝑛
′
2, 𝑛
′′
2 , · · · } (at line 7). Let the path condition of (𝑛1,

· · · ) and (𝑛2, 𝑛
′
2, 𝑛
′′
2 , · · · ) be (𝜑1, · · · ) and (𝜑2, 𝜑

′
2, 𝜑

′′
2 , · · · ), re-

spectively. Since the transition systems are deterministic, we have

that (𝜑2 ∨ 𝜑 ′2 ∨ 𝜑 ′′2 ∨ · · · ) is a tautology and 𝜑2 is disjoint from

Ψ2 = (𝜑
′
2 ∨𝜑

′′
2 ∨ · · · ). Thus, 𝜑1 ∧¬𝜑2 is equivalent to 𝜑1 ∧Ψ2. Now,

for proving 𝜑1 ⇒ 𝜑2, we ask Z3 to prove the unsatisfiability of

𝜑1∧Ψ2 (instead of 𝜑1∧¬𝜑2). Note that Z3 performs much better for

solving the positive form 𝜑1 ∧ Ψ2 than the original negative form

𝜑1 ∧ ¬𝜑2, even though the two are logically equivalent in theory,

and the positive form is larger in size than the negative form.

This optimization has been adopted in our TV prototype in Sec-

tion 4, leveraging the fact that both our source and target language

semantics (LLVM and x86) are deterministic.

Example. We implemented the symbolic variant of Algorithm 1

in a tool called Keq for checking language-independent program

equivalence.5 To illustrate how Keq works, consider the running

example in Figure 2. At the beginning of the programs, we have the

symbolic synchronization point 𝑝0 which is a triple (𝑠𝑝0, 𝑠
′
𝑝0,𝜓𝑝0),

where

𝑠𝑝0 ≡ %a0 ↦→ 𝑎0 ∗ %d ↦→ 𝑑0 ∗ %n ↦→ 𝑛0

𝑠 ′𝑝0 ≡ edi ↦→ 𝑎′0 ∗ esi ↦→ 𝑑 ′0 ∗ edx ↦→ 𝑛′0

𝜓𝑝0 ≡ 𝑎0 = 𝑎′0 ∧ 𝑑0 = 𝑑 ′0 ∧ 𝑛0 = 𝑛′0

are the symbolic state of the LLVM program, the symbolic state

of the x86 program (∗ is a separator for map bindings), and the

4In case that the two path conditions are not equivalent, we can split the symbolic
states with different path conditions and re-run the loop (lines 8ś10).
5Keq also supports program refinement, but for simplicity we only discuss equivalence.

constraint for 𝑠𝑝0 and 𝑠 ′𝑝0 to be related, essentially saying that

the inputs of the two programs are the same. Mathematically, 𝑝0

denotes the set of infinitely many pairs of states {(𝑠𝑝0, 𝑠
′
𝑝0) | 𝜓𝑝0} =

{(%a0 ↦→ 𝑎 ∗ %d ↦→ 𝑑 ∗ %n ↦→ 𝑛, edi ↦→ 𝑎 ∗ esi ↦→ 𝑑 ∗ edx ↦→

𝑛) | 𝑎, 𝑑, 𝑛 ∈ N} (an over-approximation including all the pairs

of interest). Symbolic synchronization points 𝑝1, 𝑝2, and 𝑝3 are

similarly defined (see Figure 3).

Next we illustrate how Keq symbolically runs Algorithm 1. Let

P = {𝑝0, 𝑝1, 𝑝2, 𝑝3}. First, Keq picks one point (say 𝑝0) from P

(line 2 of Algorithm 1) and executes the function check with it. In

check, it first symbolically executes each program (lines 7 and 19)

until they reach another synchronization point (line 21). In our case

they reach 𝑝1 with the pair of symbolic states:

𝑠𝑝1 ≡ 𝑠𝑝0

𝑠 ′𝑝1 ≡ 𝑠
′
𝑝0 ∗ %vr8 ↦→ 𝑛′0 ∗ %vr7 ↦→ 𝑑 ′0 ∗ %vr6 ↦→ 𝑎′0 ∗ %vr9 ↦→ 1

Keq checks if {(𝑠𝑝1, 𝑠
′
𝑝1) | 𝜓𝑝0} is included in 𝑝1 (line 9), which is

true.

Next, suppose Keq picks 𝑝2 (line 2). Symbolic execution starting

from 𝑝2 yields two pairs of symbolic traces, that reach synchroniza-

tion points 𝑝2 (through the for-loop body) and 𝑝3 (escaping the

for-loop), respectively. Let us consider the first case. We have the

pair of the final states:

𝑠𝑝2 ≡ (%d ↦→ 𝑑2 ∗ add1 ↦→ 𝑠2 + 𝑎2 + 𝑑2 ∗ %n ↦→ 𝑛2

∗ add ↦→ 𝑎2 + 𝑑2 ∗ inc ↦→ 𝑖2 + 1) ∧ (𝑖2 < 𝑛2)

𝑠 ′𝑝2 ≡ (%vr7 ↦→ 𝑑 ′2 ∗ %vr4 ↦→ 𝑠 ′2 + 𝑎
′
2 + 𝑑

′
2 ∗ %vr8 ↦→ 𝑛′2

∗ %vr3 ↦→ 𝑎′2 + 𝑑
′
2 ∗ %vr5 ↦→ 𝑖 ′2 + 1) ∧ (𝑖

′
2 − 𝑛

′
2 < 0)

𝜓𝑝2 ≡ 𝑎2 = 𝑎′2 ∧ 𝑑2 = 𝑑 ′2 ∧ 𝑠2 = 𝑠 ′2 ∧ 𝑖2 = 𝑖 ′2 ∧ 𝑛2 = 𝑛′2

Keq checks if {(𝑠𝑝2, 𝑠
′
𝑝2) | 𝜓𝑝2} is included in 𝑝2 (line 9), which

is true. Regarding the path conditions, Keq checks if 𝑖2 < 𝑛2 and

𝑖 ′2 − 𝑛
′
2 < 0 are equivalent given𝜓𝑝2, which is true.

The other case for 𝑝3 is similar and check with 𝑝2 returns true.

Then, Keq continues to pick from the remaining synchronization

points and execute check with each of them (loop at lines 2-4),

eventually returning true (line 5).

4 TRANSLATION VALIDATION FOR LLVM
INSTRUCTION SELECTION

Here we describe the application of the proposed equivalence check-

ing algorithm in a translation validation system for the Instruction

Selection phase of LLVM. This phase translates the LLVM interme-

diate representation (IR) into various target instruction sets, and

we focus on the x86-64 target for the scope of this work. We chose

this particular application because it is a non-trivial component of

a widely-used mature compiler that operates with different input

and output languages. Moreover, in an LLVM-based compiler (e.g.,

Clang [6], Swift [39], Julia [16]), this phase is the primary language

translation step beyond the front-end: it converts the mid-level IR

to the low-level Machine IR. As explained in Section 6, none of the

existing TV techniques can be directly used to validate instruction

selection, because it translates between two fundamentally different

languages.

The various components of the system along with the Instruction

Selection (ISel) phase itself are shown in Figure 5. ISel translates
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Figure 5: Translation validation system for LLVM ISel phase

LLVM IR to Machine IR; when targeting x86-64, the generated

machine IR represents a slightly simplified version of the x86-64

instruction set that we call łVirtual x86ž. Let us discuss the various

components of the TV system in more detail.

Verification Condition Generator. We enhanced ISel with a hint

generator to output information relevant to the specific transla-

tion instance. This information along with the input and output

programs guides the generation of the synchronization points for

the translation instance. These two components, the hint generator

and the synchronization points generator, constitute the Verifica-

tion Condition (VC) generator. A key observation is that the hint

generator will be part of the compiler code base and maintained by

compiler engineers, so we want its implementation to be possible

without any formal methods expertise.

The specific strategy for synchronization point generation em-

ployed by our VC generator for ISel is described in more detail in

Subsection 4.5. In general, the objective of a VC generator for use

with Keq is to provide a set of points that form a cut for the input

and output programs and are adequate for a cut-bisimulation proof

by Keq. Determining a strategy for the generation of such points

requires understanding of the target transformation’s assumptions

and effects on the code, as well as formal methods knowledge about

bisimulation proofs.

Typically, a successful VC generator will need some information

about the effects of the target transformation on the code. For

example, our VC generator requires knowledge of the mapping

from LLVM IR virtual registers to Virtual x86 virtual and/or physical

registers that was used during the translation of the target input

program. Such information can be either automatically obtained

by an appropriate inference algorithm or provided by enhancing

the compiler with a hint generator. The former approach treats

the compiler as a completely black box, while the latter trades off

transparency for increased accuracy. In case of a hint generator,

we emphasize that this specific component should not require any

formal methods expertise to be developed or maintained.

Language Semantics. The set of synchronization points is pro-

vided to Keq, which is parameterized by the K semantic defini-

tions of LLVM IR and Virtual x86. These are discussed in more

detail in Subsections 4.2 and 4.3. In general, one needs a K seman-

tic definition for the input and output languages involved in the

target transformation (which may be identical if the language is

preserved).

Acceptability Relation. The acceptability relation is a formal way

to abstract away the correspondence between program states in

different languages: Recall that the cut-bisimulation theory is pa-

rameterized by a given acceptability relation, which relates equiv-

alent states across the two programs. Such correspondence may

not be trivial between two different languages. However it has no

effect on the theory other than the requirement that the states re-

lated in the cut-bisimulation relation must also be related in the

acceptability relation. In general, the acceptability relation can be

arbitrarily complex to define for any two given different languages.

In our system, we provide common.k, a third semantic definition

accepted by Keq, for formally defining complex acceptability re-

lations. This way, we can at least make the formal definitions for

the same language pairs reusable, similar to the language semantic

definitions themselves. In the case of LLVM IR and Virtual x86, the

acceptability relation is mostly straight-forward. Specifically, in our

TV system, the common.k module contains various definitions of

equivalent (or common) components of the state in the two lan-

guages. This serves as a shortcut so that these components need

not be repeatedly marked as equivalent in every synchronization

point. The most significant such component is the memory model

used for the two definitions (see Subsection 4.4).

Keq runs the equivalence checking algorithm presented in Sec-

tion 3 on the given set of synchronization points and outputs a

verdict that validates the translation instance or flags it as not val-

idated. In our ISel TV system, we need to trust (beyond the Keq

implementation and the K semantic definitions) that the given syn-

chronization points cover all entry points of each function of the

program, and the synchronization points belong to the acceptabil-

ity relation.6 Note that we do not need to trust that other relevant

points (e.g., exit points, loopheads, etc.) are also covered by the set

of synchronization points, because otherwise Keq will fail.

4.1 LLVM Instruction Selection Phase

The ISel phase [23] of an LLVM-based compiler is responsible for

translating LLVM IR into a selected target’s instruction set. This

is a non-trivial component of the compiler, implemented in more

than 140,000 lines of C++ and TableGen [25] code (excluding target-

specific code for back-end targets other than x86-64). During ISel,

LLVM IR code is first converted into a target-independent directed

acyclic graph (DAG) representation called SelectionDAG with one

DAG per basic block. Next, the instruction selection happens by

matching patterns of DAG subgraphs to new subgraphs that contain

the target opcodes. Finally, the DAG nodes are linearized to produce

instruction sequences per basic block.

6In principle, the latter can be excluded from the trust base by verifying it in a separate
process, but we only manually checked it since the acceptability relation is rather
straightforward in this case.

1010



ASPLOS ’21, April 19–23, 2021, Virtual, USA Theodoros Kasampalis, Daejun Park, Zhengyao Lin, Vikram S. Adve, and Grigore Ros,u

Our translation validation prototype works for LLVM version

5.0.2. There are two different instruction selection algorithms in

LLVM 5.0.2: SDISel and FastISel. SDISel is slower and more sophisti-

cated, and is the default for compilation to native; FastISel is faster

and used at O0 and in JIT compilation. Our prototype works on

SDISel with -O0, since this level performs the least amount of extra

transformations to the code, focusing instead mainly on the lan-

guage translation. Optimizations enabled in higher levels include

more aggressive pattern folding and more aggressive constant prop-

agation. These do not affect the applicability of our method, but

may require more sophisticated hint generation.

4.2 LLVM IR Semantics

The LLVM IR documentation can be found in [22]. In our LLVM

semantics definition, we model the i1, i8, i16, i32, and i64 integer

types, composite (arbitrarily nested) array and struct types, the cor-

responding pointer types, and type-cast instructions, including in-

teger/pointer casts (inttoptr and ptrtoint). The getelementptr

instruction is used to compute the address of an element within a

composite type. We also model integer arithmetic operators, bitwise

operators, and the integer and pointer comparison operators. We

model the control flow instructions for unconditional and condi-

tional branches, as well as function calls and returns. Finally, the

supported memory operations are loads, stores, and the alloca

instruction for stack allocation of local variables. The LLVM seman-

tics uses the common memory model described in Subsection 4.4 as

its memory abstraction. Our memory abstraction does not yet take

alignment requirements into consideration, so we do not support

programs that assume any kind of variable or load/store alignment.

4.3 Virtual x86 Semantics

The output of ISel is LLVM Machine IR, a low-level representation

representing the opcodes and operand types of the selected target

ISA. More specifically, the LLVM Machine IR is a register-based

IR that is parametric to any number of ISA opcodes and physical

registers. It also supports a number of higher-level features such as

various pseudo-opcodes (such as COPY, PHI, and others), an unlim-

ited number of virtual registers, a frame abstraction for modeling

call stacks, and a jump table abstraction. The Machine IR used in

the x86 backend of the LLVM compiler is then specialized by using

all the x86 opcodes and the full x86 physical register file [15]. We

call this version of the Machine IR łVirtual x86.ž

OurK semantic definition of Virtual x86 captures all the extended

features except jump tables and also various features of x86-64.

We model integer arithmetic operations and integer comparison

operations, the general-purpose physical registers, conditional and

unconditional jump instructions, and the flags and program counter

registers, eflags and rip. As with the LLVM IR semantics, the

program address space is modeled using the common memory

model abstraction described in Subsection 4.4. We model various

move instructions that copy data between registers and memory.

4.4 Common Memory Model

Both the LLVM and Virtual x86 semantics definitions use a common,

low-level, sequentially consistent memory model. This simplifies

the formal definition of equivalent memory configurations between

LLVM and Virtual x86 programs. The semantic definition of this

common memory model is part of the acceptability relation and is

contained in common.k (see Section 2 and Figure 5).

4.5 Characterizing Synchronization Points

Each synchronization point is a pair of symbolic states of the input

and output programs, accompanied by a set of equality constraints

over symbolic variables in the two states. Figure 3 shows the syn-

chronization points generated by our TV system for the programs

in Figure 2. For example, the synchronization point p1 consists of

a symbolic state for the LLVM IR program that represents states

entering the for.cond basic block from the entry basic block, and

a symbolic state for the Virtual x86 program that represents states

entering the .LBB1 basic block from the .LBB0 basic block. In ad-

dition, the point represents only pairs of states that satisfy the

equality constrains %d = %vr7_32, %a.0 = %vr6_32, %n = %vr8_32,

and %vr9_32 = 1, where the names of the virtual registers serve

also as the names of the symbolic values that they hold in the cor-

responding symbolic states. In general, each synchronization point

describes a potentially infinite number of input and output program

state pairs, one pair for each concrete substitution of the symbolic

variables of the two states that satisfies both state constraints as

well as the equality constraints of the synchronization point.

To be sound, the synchronization points should be a cut for

the programs, i.e., łcoveringž all possible program executions (see

Section 2). In the rest of this subsection, we discuss how the syn-

chronization point generator creates the set of points to be given

to Keq using compiler-provided hints and static analysis results.

Please note that this generator is specifically designed for the ISel

pass of LLVM. As discussed earlier, different transformations may

require different synchronization point generation strategies.

Function Granularity. An important design decision is whether

input/output function pairs should be treated independently or not.

When function pairs are treated independently, the translation of

each function is considered a unique instance of the equivalence

checking problem. In this case, we can assume that both caller and

callee functions will be translated correctly, and hence function

calls to the same function are equivalent. This is the same assump-

tion that the compiler makes when applying any intraprocedural

transformation to a function, and for this reason treating function

pairs independently is a natural choice when doing translation

validation of an intra-procedural transformation, such as ISel. This

approach has the added benefit that it deals uniformly with cases

of missing code and compile-time unknown callers and callees:

Every function call, whether the callee is known, unknown, or

missing is treated the same. Only the missing callers and callees

must be trusted because translations of all available functions will

be validated.

Function Entry and Exit. We generate synchronization points

that cover the entry and corresponding exits of each function pair.

These are the points 𝑝0 and 𝑝3 in Figure 3 for the program in

Figure 2. We can infer the equality constraint for these points from

the calling convention.

Loop Entry. We also generate synchronization points that cover

the entries of corresponding loops in order to cover states that

belong to cycles. These are the points 𝑝1 and 𝑝2 in Figure 3 (one
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point per predecessor to expedite the symbolic execution of the phi

instructions). The relation between loops in the input and output

is provided as a compiler-generated hint. The equality constraints

for these points relate corresponding live registers in the input

and output. The register correspondence is provided as a compiler-

generated hint, computing using a Live Variables static analysis.

Call sites. Assuming that calls starting from equivalent states

result in returns to equivalent states, it suffices to generate syn-

chronization points before and after corresponding call sites. A

synchronization point before a call site is treated as covering an

exiting state (meaning that we do not symbolically execute the call

itself in Keq). The constraints for a point after a call site relate

corresponding live registers and corresponding return values. The

equality constraints for the points before and after a call site are

inferred from the calling convention.

Memory state. Finally, all synchronization points should con-

tain constraints that ensure that corresponding memory objects

accessible by the functions hold the same contents. Since our pro-

totype uses a common memory model for input and output, this

requirement is translated to a simple equality constraint between

the whole memory of the input and output.

In summary, the only compiler generated hints required in our

approach are pairs of corresponding LLVM and Virtual x86 vir-

tual registers and pairs of corresponding loops. The hint generator

records and outputs these for each translation instance. Its imple-

mentation is trivial, adding just about 500 lines of C++ code to ISel,

and does not require any formal methods expertise.

4.6 Characterizing Undefined Behaviors

The ability to handle undefined behaviors is an important aspect of

a practical TV system for C/C++ programs. Our prototype handles

undefined behaviors related to memory out-of-bounds accesses as

well as signed integer overflow.

We model these undefined behaviors by a set of uniquely marked

error states. When such behavior can potentially happen in a sym-

bolic state, our semantics have rules to conditionally branch into

an error state, which captures information about the nature of the

reached undefined behavior. Our acceptability relation for LLVM

IR and Virtual x86 relates LLVM error states to any Virtual x86

state. On the other hand, Virtual x86 error states are only related

with relevant LLVM error states in the acceptability relation, e.g.

the out-of-bounds access error state in Virtual x86 is related only

to the out-of-bounds access error state in LLVM. This way Keq

automatically reverts to checking refinement in the presence of

undefined behaviors.

4.7 Challenging Validations

Although, the TV system presented here is able to validate a large

number of real-world code compilations (see Section 5), we briefly

discuss a few examples that have proved challenging:

• Modeling undefined behaviors in LLVM (in particular poison

and undef values) requires much more work; our method

only works for simple undefined behaviors that can be cap-

tured by transitioning to a single łerrorž state. Lee et al. [20]

gives a detailed analysis of undefined behavior in LLVM and

the challenges of formally modeling it.

Result #Functions

Succeeded 4,331

Failed due to timeout 206

Failed due to out-of-memory 179

Other 16

Total 4,732

Figure 6: Translation validation results for GCC benchmark
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Figure 7: Distributions of validation time and code size

• ISel performs some strength reductions that are difficult to

prove correct in Z3. For example, LLVM sometimes reduces

a division by a constant to shifts and multiplications, which

would take Z3 a considerable amount of time to prove with-

out adding dedicated lemmas.

5 EVALUATION ON REAL-WORLD CODE

We evaluate the Translation Validation system for Instruction Se-

lection in two ways. First, we apply the system to the compilation

of the GCC SPEC 2006 benchmark [37]. Second, we reintroduce

several bugs that were found and fixed in the Instruction Selec-

tion pass of LLVM and verify that our system does not validate

translations that trigger these bugs, which are miscompilations.

5.1 Application to GCC from SPEC 2006

We applied the Translation Validation prototype to the source code

of the GCC SPEC 2006 benchmark, a version of an important piece

of software that affects the correctness of many other critical soft-

ware systems (e.g., the Linux kernel). The GCC source code is

comprised of 5572 C functions, which we compiled to LLVM IR

using clang-5.0.2 at optimization level -O0 and translated to Vir-

tual x86 by the ISel pass of LLVM 5.0.2. For each verification run,

we allocated 2 Intel Xeon CPU E7-8837 processors at 2.67GHz and

12GB of memory, with a timeout of 3 hours.

Out of the 5572 functions, our evaluation considered 4732 func-

tions that are covered by our LLVM and x86 language semantics

(Section 4.2 & 4.3). The remaining functions involve floating point,

SIMD, or certain bitwise operations that are not supported by the

current semantics. In the following discussion, 4732 will be the

denominator of all percentages mentioned.

Figure 7 shows distributions of validation time and the code size

of the functions. With the above hardware setup, the average time

for processing a function in our GCC experiment is 150 seconds
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and the median is 0.8 seconds. Note that this does not include the

time used for K to load the semantics and parse the input proofs.

Out of the 4732 functions, our prototype was able to formally

verify the translation of 4331 functions (91.52%). Figure 6 categorizes

the reasons for failure for the remaining 401 functions. We discuss

these categories in more detail below.

Timeout. 206 functions (4.35%) failed due to timeout (3 hour

limit), and the Z3 solving time was the dominating factor. With

the symbolic variant of Algorithm 1, Keq may make multiple Z3

queries in each step containing path conditions, which grow sig-

nificantly over time, particularly when there is a large number of

complicated memory operations and branching conditions. Making

things worse, the current integration of Z3 in the K framework

does not use the incremental query solving feature of Z3, and thus

solving each query needs to have a cold start even if many of the

complex queries share significant sub-queries. We believe that this

can be improved by integrating the incremental Z3 query solving

to the K framework.

Out ofmemory. 179 functions (3.78%) failedwith an out-of-memory

exception. All these failures happened during the parsing of our

synchronization point specifications, which were caused by perfor-

mance issues in the K builtin parser. The K parser was designed

to be quite general, equipping a comprehensive parsing ambiguity

resolving mechanism, which does not often scale well. This can be

improved by using a more compact representation of the synchro-

nization point specification to alleviate the burden on the K parser,

or by using a more recent feature of K to generate a static parser

ahead of time.

Inadequate synchronization points. The rest of the failures (16

functions) are due to an inaccuracy in our liveness analysis, that

resulted in a mismatch of LLVM and Virtual x86 live registers at the

beginning of certain basic blocks, i.e. a live register in the x86 block

with no live counter-part in the LLVM block. This caused the VC

generator to generate an inadequate set of synchronization points

for an equivalence proof. A more sophisticated liveness analysis

would resolve this issue.

5.2 Evaluation with Real LLVM Bugs

We discuss two Instruction Selection bugs previously reported in

the LLVM code base. Although the bugs are currently fixed, we

were able to reintroduce them in the compiler and we attempt to

validate translations that trigger the buggy code with our system.

In both cases, the Translation Validation system failed to verify the

buggy translation, which is the desired outcome.

Write-after-write dependency violation when translating store in-

structions. This bug causes a miscompilation that violates a write-

after-write dependency for a memory location when subsequent

overlapping stores access said location. The compiler erroneously

reorders the two write accesses while attempting to optimize the

compilation of the store instructions by merging them into fewer

wider stores.

This is a bug for the x86-64 backend and it last appeared in clang

3.7.x (as a regression from older versions) for optimization levels

-O2 and -O3 [2]. Figures 8 and 9 demonstrate the miscompilation.

Figure 8 shows the LLVM code. The shown function performs 3

2-byte wide stores at offsets 2, 3, 1 of a global byte array. This means

that the first two stores both write the byte at offset 3. A straight-

forward correct translation to x86-64 is shown in Figure 9(a), while

Figure 9(c) shows a correct optimized compilation: The third store

has been merged into the first store that becomes a 4-byte wide

store. This is correct because there is no dependency between the

third store and any of the rest and the order of the first and second

store has been preserved. On the other hand, Figure 9(b) shows

the miscompilation due to the bug: This time the first store has

been merged into the third thus reversing the write-after-write

dependency between the first and second store.

Our system catches the bug, since Keq cannot prove the candi-

date synchronization point set is a cut-bisimulation. Indeed, starting

from the entry point and assuming that the global memory con-

tents are the same, the symbolic execution of the input and output

programs leads to different memory contents for the byte at offset 3,

hence not allowing Keq to prove the constraint for equal memory

contents at the exiting synchronization point.

Incorrect load narrowing with non-power-of-two types. This bug

causes a miscompilation that leads to an out-of-bounds memory

access. The compiler erroneously compiles a 4-byte wide load to an

8-byte wide load when attempting to narrow a load that accesses a

memory location holding a non-power-of-two bitwidth type.

This is a bug for the x86-64 backend and it was found in clang

2.6.x for optimization levels -O2 and higher [1]. Figure 10 and 11

demonstrate the miscompilation. Figure 10 shows the LLVM code.

The shown function loads from a memory location holding a 12-

byte (i96) integer. It then logically shifts right the lower 8 bytes

and stores the remaining 4 bytes, zero-extended as an 8-byte (i64)

integer to another memory location. A correct translation to x86-64

is shown in Figure 11(a): The code first loads the upper 4 bytes of

the source location into eax, thus zeroing-out the higher 4 bytes

of the 64-bit general purpose register rax, according to the x86-64

semantics. It then stores rax which now holds the correct contents

(the higher 4 bytes of the store zero-extended as an 8-byte integer)

to the destination memory location. On the other hand, Figure 11(b)

shows the miscompilation due to the bug: This time the load is

8-byte wide, thus accessing 4 out-of-bounds bytes that may cause a

segmentation fault. Furthermore, the value stored at the destination

may be incorrect because the 4 higher bytes are not zeroed-out but

rather have random values.

Similar to previous case, our system catches the bug, since Keq

cannot prove the candidate synchronization point set is a cut-

bisimulation. Indeed, starting from the entry point and assuming

that the global memory contents are the same, the symbolic exe-

cution of the output x86 program branches into an out-of-bounds

error state in addition to reaching the exiting point. This error

state cannot be matched with any state in the input LLVM pro-

gram, hence not allowing Keq to prove cut-bisimulation: there is a

behavior in the output that is not found in the input7.

7In fact, in this case we cannot even prove that the output refines the input.
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@b = external global [8 x i8]

define void @foo() {

entry:

store i16 0, i16* bitcast (i8* getelementptr inbounds ([8 x i8], [8 x i8]* @b, i64 0, i64 2) to i16*)

store i16 2, i16* bitcast (i8* getelementptr inbounds ([8 x i8], [8 x i8]* @b, i64 0, i64 3) to i16*)

store i16 1, i16* bitcast (i8* getelementptr inbounds ([8 x i8], [8 x i8]* @b, i64 0, i64 0) to i16*)

ret void

}

Figure 8: LLVM IR - write-after-write dependency violation

foo:

movw $0, b+2(% rip)

movw $2, b+3(% rip)

movw $1, b(%rip)

retq

foo:

movw $2, b+3(% rip)

movl $1, b(%rip)

retq

foo:

movl $1, b(%rip)

movw $2, b+3(% rip)

retq

(a) Simple correct translation (b) Optimized incorrect translation (c) Optimized correct translation

Figure 9: x86 - write-after-write dependency violation

@a = external global i96 , align 4

@b = external global i64 , align 8

define void @foo() {

%srcval = load i96 , i96* @a, align 4

%tmp96 = lshr i96 %srcval , 64

%tmp64 = trunc i96 %tmp96 to i64

store i64 %tmp64 , i64* @b, align 8

ret void

}

Figure 10: LLVM - load narrowing with non-power of 2 types

foo:

movl a+8(% rip), %eax

movq %rax , b(%rip)

retq

(a) Optimized correct translation

foo:

movq a+8(% rip), %rax

movq %rax , b(%rip)

retq

(b) Optimized incorrect translation

Figure 11: x86 - load narrowing with non-power of 2 types

6 RELATED WORK

Verified Compilers: One approach to the problem of compiler

verification is the full formal verification of the compiler, as in

CompCert [21], CakeML [17], and the lambda calculus to typed as-

sembly compiler in [4]. Also formal verification of specific compiler

transformation passes, e.g., SSA-based transformations [43] and

peephole optimizations [26], has been proposed. Full formal verifi-

cation is attractive because it gives an ahead-of-time guarantee of

correctness for all input programs, whereas TV approaches detect

errors only when actually compiling programs and are also suscep-

tible to false alarms. Ahead-of-time verification cannot encounter

such an error, but may suffer if certain optimizations cannot be

proven correct, leading to weaker optimization choices and con-

sequently possibly poorer performance of the generated code. So

far, this approach has only been used for compilers built from the

ground up with the goal of verification in mind. For example, Com-

pCert [21], a verified compiler for C, has been written in the Coq

Proof Assistant’s specification language. The approach requires

extensive manual effort (łproof engineeringž), and much greater

expertise in formal methods than is usually available in production

compiler teams. Such design decisions and development processes

appear impractical to apply retroactively in existing compilers not

specifically designed for full verification.

TV Systems: Translation Validation as a method of verifying the

correctness of a compilation was first proposed by Samet [33] and

reformulated by Pnueli et al. [30]. TV has been used to prove cor-

rectness of specific compiler optimization passes [18, 28, 29, 36, 40,

41, 44], discover compiler bugs [13], and to prove correctness of

end-to-end compilation [30, 35]. VOC-64 [44] for the SGI Pro-64

compiler, Necula et al. [29] for the GNU C compiler, Peggy [40] for

the Soot Java bytecode optimizer, LLVM-MD [41] and Namjoshi et

al. [28] for LLVM IR passes, are all tools that perform translation

validation for the respective optimization passes in production com-

pilers. Sewell et al. [35] presents a TV approach for the compilation

of the seL4 kernel from C to binary. Hawblitzel et al. [13] use a

TV approach to determine whether assembly code produced by
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different versions of the CLR JIT compiler are semantically equiva-

lent and thus report miscompilations when there are differences.

PEC [18] proves the correctness of optimizations by applying TV

techniques in pairs of partially specified programs, where such

a pair describes a general optimization on all the corresponding

concrete programs. DDEC [36] is an equivalence checker for x86

loops that uses data collected from test runs rather than inference

or hints to construct a simulation relation.

The proof of program equivalence in the majority of these TV

tools [13, 18, 29, 30, 35, 36, 44] is based on generating sets of veri-

fication conditions, the satisfiability of which is enough to prove

equivalence. The VCs are produced as a combination of invariants

that have to be inferred and a refinement requirement that is de-

fined in a slightly different way in the context of each work. All

these various refinement requirements attempt to capture a certain

weak simulation variant. We claim that cut-bisimulation, another

weak bisimulation variant, is more suitable for compiler translation

validation in practice, and that in fact, any of these refinement re-

quirements can be expressed as a cut-simulation proof requirement.

For instance, the equivalence proof rule used to generate the re-

finement requirement in VOC-64 [44] is reminiscent of our notion

of cut-similarity, but is expressed using syntactic devices (such as

basic blocks and paths in the control flow graph) that unnecessar-

ily restrict its generality and distance it from classic bisimulation

theory. Again, we do not claim that the motivating idea of cut-

bisimulation is new, but only that our formulation captures the

essential properties required for compiler translation validation,

and moreover, enables proof systems to be parameterized by the

operational semantics of the input and output languages.

Namjoshi et al. [28] uses a variant of stuttering-bisimulation

with ranking functions, first introduced in [27], which informally

represent how many times one of the transition systems is allowed

to stutter while the other advances before the former has to advance.

This variant requires matching single transitions only, similarly

to strong bisimulation and unlike classic stuttering bisimulation,

where a single transition may have to be matched with a finite but

unbounded number of transitions, thus leading to large number of

generated proof requirements. Cut-bisimulation shares the same

property of matching single transitions only and is more appealing

for proof automation, since the proof generator does not need to

produce ranking functions in addition to synchronization points.

Finally, LLVM-MD [41], Peggy [40] and Dasgupta et al. [8] move

away from simulation proofs, and instead use graph isomorphism

techniques to prove equivalence.

All the previous work on Translation Validation we know of

assumes that the input and output programs are either written in

or are translated to a common language or representation: GNU

RTL [29], LLVM IR [28], value graphs [40, 41], x86 [36], Boogie

IR [3, 13], a C-like intermendiate language for PEC [18], and a

common representation called Transition Systems [30, 44]. Even

the translation validation approach for the seL4 kernel proposed

in [35] requires translation of the input C code and decompilation

of the output binary to a common graph language used for equiva-

lence checking. This requires trusting unchecked translations into

a common language, which is not much simpler in complexity

than the original translation itself. On the other hand, our equiv-

alence checking algorithm is parametric to the input and output

language semantics, thus generalizing the original approach of

Pnueli et al. by eliminating the requirement for a common semantic

framework. This makes it much easier (and more robust) to validate

translations between two different languages (e.g., as in Instruction

Selection), because it does not require carrying out (and trusting)

the unchecked translations. Keq is the first tool for program equiv-

alence checking we know of that is truly language-independent.

Hints vs Heuristics for VC generation: Our proposed algorithm

takes as input a relation between program points in the input and

output languages. To generate this relation, our implemented pro-

totype for LLVM ISel uses compiler-generated hints, similar to the

witnesses introduced in [28]. Other works discuss various heuristics

that can be used instead. In particular Necula et al. [29] describes an

inference algorithm to generate both, a relation between program

points and the accompanying constraints between program vari-

ables and memory locations for two functions when any number of

compiler transformations have been applied to the original function

to produce the transformed function. The algorithm uses transfer

functions to describe the effect of each basic block, which are gen-

erated automatically using symbolic execution. Working towards a

language independent proof generator, it is possible that one can

derive a language independent version of this inference algorithm

by implementing to be parametric in the language semantics in

a fashion similar to Keq. Finally, DDEC [36] uses a combination

of static analysis and data-driven inference for constructing simu-

lation relations: Static analysis is used to determine the program

locations of synchronization points and the live variables while the

constraints between variables are inferred from execution traces.

Mutual Equivalence Proof System: Our equivalence checking al-

gorithm was inspired from the language-independent proof system

for mutual equivalence introduced in [5]. Instead of a proof system,

here we propose a bisimulation relation and an algorithm based on

it and symbolic execution, leading to the first language-independent

implementation of a checker for equivalence between programs

written in two different languages.

7 FORMALIZATION OF CUT-BISIMULATION

Notations. Given a binary relation 𝑅 ⊆ 𝑆1 × 𝑆2, we write 𝑎 𝑅 𝑏 to

denote (𝑎, 𝑏) ∈ 𝑅; and 𝑅1 = {𝑎 | ∃𝑏 . 𝑎 𝑅 𝑏} and 𝑅2 = {𝑏 | ∃𝑎 . 𝑎 𝑅 𝑏}

to denote the projections Π𝑖 (𝑅) for 𝑖 ∈ {1, 2}.

Let 𝑆 be a set of states (thought of as all possible states of a

language, over all programs in the language). Let 𝑇 = (𝑆, 𝜉,→)

be an 𝑆-transition system, or just a transition system when 𝑆 is

understood, that is a triple consisting of: a set of states 𝑆 ⊆ 𝑆 ,

an initial state 𝜉 ∈ 𝑆 , and a (possibly nondeterministic) transition

relation → ⊆ 𝑆 × 𝑆 . Let next (𝑠) denote the set {𝑠 ′ | 𝑠 → 𝑠 ′}. 𝑇

is finitely branching iff next (𝑠) is finite for each 𝑠 ∈ 𝑆 . Let→∗ be

the reflexive and transitive closure of→, and→+ be the transitive

closure of→.

A (possibly infinite) trace 𝜏 = 𝑠0𝑠1 · · · 𝑠𝑛 · · · is a sequence of

states with 𝑠𝑖 → 𝑠𝑖+1 for all 𝑖 ≥ 0. Let 𝜏 [𝑛] be the 𝑛th state of 𝜏

where the index starts from 0, and let size(𝜏) be the length of 𝜏 (∞

when 𝜏 is infinite). Let first(𝜏) = 𝜏 [0] be the first state of 𝜏 , and let

final(𝜏) be the final state of 𝜏 when 𝜏 is finite. Let traces(𝑠) be the

set of all traces starting with 𝑠 , also called 𝑠-traces, and let traces(𝑆)
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s

Figure 12: Left: a cut 𝐶 for state 𝑠 (each complete 𝑠-trace in-

tersects 𝐶). Right: a cut 𝐶 for a transition system (𝐶 contains

the initial state and is a cut for itself, i.e., for each state in 𝐶)

be
⋃

𝑠∈𝑆 traces(𝑠). A complete trace is either an infinite trace, or a

finite trace 𝜏 where next (final(𝜏)) = ∅.

Definition 7.1 (Cut and Cut Transition System). Let 𝑇 =

(𝑆, 𝜉,→) be a transition system. A set 𝐶 ⊆ 𝑆 is a cut for 𝑠 ∈ 𝑆 , iff for

any complete trace 𝜏 ∈ traces(𝑠), there exists some strictly positive

𝑘 > 0 such that 𝜏 [𝑘] ∈ 𝐶 . The set𝐶 ⊆ 𝑆 is a cut for𝑇 iff 𝜉 ∈ 𝐶 and𝐶

is a cut for each 𝑠 ∈ 𝐶 , in that case𝑇 is called a cut transition system

and is written as a quadruple (𝑆, 𝜉,→,𝐶). See Figure 12.

In a cut transition system, any finite complete trace starting

with the initial state terminates in a cut state, and any infinite trace

starting with the initial state goes through cut states infinitely often:

Lemma 7.2. Let 𝑇 = (𝑆, 𝜉,→,𝐶) be a cut transition system. Then

for each complete trace 𝜏 ∈ traces(𝜉) and each 0 < 𝑖 < size(𝜏), there

is some 𝑗 ≥ 𝑖 such that 𝜏 [ 𝑗] ∈ 𝐶 .

Proof. Let 𝜏 ∈ traces(𝜉) be a complete trace. Assume to the

contrary that there exists 𝑖 such that ∀𝑗 ≥ 𝑖 . 𝜏 [ 𝑗] ∉ 𝐶 . Pick such

an 𝑖 . Then we have two cases. When ∀𝑘 < 𝑖 . 𝜏 [𝑘] ∉ 𝐶 , we have

∀𝑘 > 0. 𝜏 [𝑘] ∉ 𝐶 , which is a contradiction since 𝐶 is a cut for

𝜉 = 𝜏 [0]. Otherwise, ∃𝑘 < 𝑖 . 𝜏 [𝑘] ∈ 𝐶 , and let 𝑘 be the largest such

number. Then, we have ∀𝑙 > 𝑘. 𝜏 [𝑙] ∉ 𝐶 , which is a contradiction

since 𝐶 is a cut for each 𝑠 ∈ 𝐶 , thus a cut for 𝜏 [𝑘] ∈ 𝐶 . □

Cuts do not need to be minimal in practice, and are not difficult

to produce. For example, a typical cut includes all the final states

(normally terminating states, error/exception states, etc.) and all

the states corresponding to entry points of cyclic constructs such

as loops and recursive functions. Such cut states can be easily

identified statically using control-flow analysis, or dynamically

using an operational semantics.

Definition 7.3 (Cut-Successor). Let 𝑇 = (𝑆, 𝜉,→,𝐶) be a cut

transition system. A state 𝑠 ′ is an (immediate) cut-successor of 𝑠 ,

written 𝑠 { 𝑠 ′, iff there exists a finite trace 𝑠𝑠1 · · · 𝑠𝑛𝑠
′ where 𝑠 ′ ∈ 𝐶

and 𝑛 ≥ 0 and 𝑠𝑖 ∉ 𝐶 for all 1 ≤ 𝑖 ≤ 𝑛.

Definition 7.4 (Cut-Bisimilarity). Let 𝑇𝑖 = (𝑆𝑖 , 𝜉𝑖 ,→𝑖 ,𝐶𝑖 ) be

two cut transition systems (𝑖 ∈ {1, 2}). Relation 𝑅 ⊆ 𝐶1 × 𝐶2 is a

cut-simulation iff whenever (𝑠1, 𝑠2) ∈ 𝑅, for all 𝑠 ′1 with 𝑠1 {1 𝑠 ′1
there is some 𝑠 ′2 such that 𝑠2 {2 𝑠 ′2 and (𝑠

′
1, 𝑠
′
2) ∈ 𝑅. Let ≤ be the

union of all cut-simulations (also a cut-simulation). Relation 𝑅 is a

cut-bisimulation iff both 𝑅 and 𝑅−1 are cut-simulations. Let ∼ be the

union of all cut-bisimulations (also a cut-bisimulation).

Cut-bisimulation generalizes classic (strong) bisimulation [34]. A

cut-bisimulation on (𝑆𝑖 , 𝜉𝑖 ,→𝑖 ,𝐶𝑖 ) is a bisimulation on (𝑆𝑖 , 𝜉𝑖 ,→𝑖 ),

when 𝐶𝑖 = 𝑆𝑖 . Furthermore, a cut-bisimulation on 𝑇 becomes a

bisimulation on the cut-abstract transition system of𝑇 , as described

below.

Definition 7.5 (Cut-Abstract Transition System). Let𝑇 be a

cut transition system (𝑆, 𝜉,→,𝐶). The cut-abstract transition system

of 𝑇 , written 𝑇 , is the (standard) transition system (𝐶, 𝜉,{).

Lemma 7.6. Let 𝑇𝑖 = (𝑆𝑖 , 𝜉𝑖 ,→𝑖 ,𝐶𝑖 ) be two cut transition systems

(𝑖 ∈ {1, 2}). A relation 𝑅 ⊆ 𝐶1 ×𝐶2 is a cut-bisimulation on 𝑇1 and

𝑇2, iff 𝑅 is a (standard) bisimulation on 𝑇1 and 𝑇2.

Proof. By identifying{𝑖 as the transition relation of 𝑇𝑖 . □

Corollary 7.7. Let 𝑇𝑖 = (𝑆𝑖 , 𝜉𝑖 ,→𝑖 ,𝐶𝑖 ) be two cut transition

systems (𝑖 ∈ {1, 2}). Let 𝑅 be a cut-bisimulation, and (𝑠1, 𝑠2) ∈ 𝑅.

For any state 𝑠 ′1 ∈ 𝐶1 with 𝑠1 →
+
1 𝑠 ′1, there exists some 𝑠 ′2 ∈ 𝐶2 with

𝑠2 →
+
2 𝑠 ′2 such that (𝑠 ′1, 𝑠

′
2) ∈ 𝑅. The converse also holds.

Proof. By Lemma 7.6 and the bisimulation invariant of reacha-

bility. □

Now we formalize the equivalence of cut transition systems in

the presence of a given acceptability (or compatibility, or indistin-

guishability) relation A on states.

Definition 7.8. Let A ⊆ 𝑆1 × 𝑆2, which we call an acceptability

relation. Let 𝑇𝑖 = (𝑆𝑖 , 𝜉𝑖 ,→𝑖 ,𝐶𝑖 ) be two cut transition systems (𝑖 ∈

{1, 2}). 𝑇2 cut-simulates 𝑇1 (i.e., 𝑇1 cut-refines 𝑇2) w.r.t. A , written

𝑇1 ≤A 𝑇2, iff there exists a cut-simulation P ⊆ A such that 𝜉1 P 𝜉2.

Furthermore, 𝑇1 and 𝑇2 are cut-bisimilar w.r.t. A , written 𝑇1 ∼A 𝑇2,

iff there exists a cut-bisimulation P ⊆ A such that 𝜉1 P 𝜉2.

Note that if a cut-bisimulation P like above exists, then there also

exists a largest one; that’s because the union of cut-bisimulations

included in A is also a cut-bisimulation included in A . We let the

relation ∼A denote that largest cut-bisimulation, assuming that it

exists whenever we use the notation (and similarly for ≤A ).

Our thesis is that ∼A yields the right notion of program equiva-

lence. That is, that two programs are equivalent according to a given

state acceptability (or compatibility or indistinguishability) relation

A between the states of the respective programming languages, iff

for any input, the cut transition systems 𝑇1 and 𝑇2 corresponding

to the two program executions satisfy 𝑇1 ∼A 𝑇2. The following

result strengthens our thesis, stating that cut-bisimilar transition

systems reach compatible cut states, and, furthermore, that they

cannot indefinitely avoid reaching a cut state:

Theorem 7.9. If 𝑇1 ∼A 𝑇2 then for each 𝑠1 with 𝜉1 →
+
1 𝑠1 there

exists some 𝑠2 with 𝜉2 →
+
2 𝑠2, such that: (1) if 𝑠1 ∈ 𝐶1 then 𝑠1 ∼A 𝑠2;

and (2) if 𝑠1 ∉ 𝐶1 then there exists some 𝑠 ′1 ∈ 𝐶1 such that 𝑠1 →
+ 𝑠 ′1

and 𝑠 ′1 ∼A 𝑠2. The converse also holds.

Proof. We only need to show the forward direction, since the

backward is dual. First we have 𝜉1 ∼ 𝜉2 by Definition 7.8 and the

fact that ∼ is the union of all cut-bisimulations. Let 𝑠1 be a state

with 𝜉1 →
+
1 𝑠1. Then we have two cases:

• When 𝑠1 ∈ 𝐶1. There exists 𝑠2 such that 𝜉2 →
+
2 𝑠2 and 𝑠1 ∼ 𝑠2

by Corollary 7.7.
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• When 𝑠1 ∉ 𝐶1. There exists 𝑠
′
1 such that 𝑠1 →

+
1 𝑠 ′1 and 𝑠

′
1 ∈ 𝐶1

by Lemma 7.2 and the fact that 𝐶1 is a cut for 𝜉1 ∈ 𝐶1.

Then, there exists 𝑠2 such that 𝜉2 →
+
2 𝑠2 and 𝑠 ′1 ∼ 𝑠2 by

Corollary 7.7.

□

8 CORRECTNESS OF EQUIVALENCE
CHECKING ALGORITHM

We show that Algorithm 1 is refutation-complete, i.e. if it does not

terminate then the two programs are equivalent:

Theorem 8.1 (Correctness of Algorithm 1). Suppose that

cut transition systems 𝑇𝑖 = (𝑆𝑖 , 𝜉𝑖 ,→𝑖 ,𝐶𝑖 ) are finitely branching

(𝑖 ∈ {1, 2}) and P ⊆ A is recursively enumerable with (𝜉1, 𝜉2) ∈ P. If

Algorithm 1 does not terminate with false, then 𝑇1 ∼A 𝑇2.

Proof. By Definition 7.8, we only need to show that P is a cut-

bisimulation when main does not terminate with returning false.

First let us characterize the two sub-functions:

(1) check(𝑝1,𝑝2) terminates; and if it returns true, then for all

𝑝1 {1 𝑠1, there exists 𝑠2 such that 𝑝2 {2 𝑠2 and (𝑠1, 𝑠2) ∈ P;

and the converse also holds.

(2) next𝑖 (𝑛) terminates and returns the set of all cut-successors

of 𝑛, i.e., {𝑛′ | 𝑛 {𝑖 𝑛
′}.

P is cut-bisimulation by (1), while the claim (1) is straightforward

by (2). Now we only need to show the claim (2). To show (2), let us

claim the invariant of the while loop as follows. It is easy to show

that it is maintained in each iteration.

• For each finite trace 𝑛1 · · ·𝑛𝑘𝑛
′ (𝑘 ≥ 1) such that 𝑛1 = 𝑛,

𝑛 𝑗 ∉ 𝐶𝑖 (1 < 𝑗 ≤ 𝑘) and 𝑛′ ∈ 𝐶𝑖 , either holds: 𝑛
′ ∈ 𝑅𝑒𝑡 or

∃𝑚 ∈ [1, 𝑘] . 𝑛𝑚 ∈ 𝑁 .

• For each 𝑛′ ∈ 𝑁 ∪ 𝑅𝑒𝑡 such that 𝑛′ ≠ 𝑛, there exists a finite

trace 𝑛𝑛1 · · ·𝑛𝑘𝑛
′ (𝑘 ≥ 0) such that 𝑛 𝑗 ∉ 𝐶𝑖 (1 ≤ 𝑗 ≤ 𝑘).

• 𝑅𝑒𝑡 ⊆ 𝐶𝑖 .

Now let us show (2). First, 𝑅𝑒𝑡 ⊆ {𝑛′ | 𝑛 {𝑖 𝑛
′} by the second and

the third bullets. Then, 𝑅𝑒𝑡 ⊇ {𝑛′ | 𝑛 {𝑖 𝑛
′} by the first bullet,

since 𝑁 is empty when it terminates. Let us show the termination.

Assume next𝑖 (𝑛) does not terminate. If it does not terminate, then

since 𝑇𝑖 is finitely branching, there should exist an infinite trace

from 𝑛 that never comes across one of𝐶𝑖 , which is the contradiction

since 𝐶𝑖 is a cut for 𝑛 ∈ P𝑖 ⊆ 𝐶𝑖 . Now let us show that the loop

invariant is maintained in each iteration. The second and the third

bullets are trivial. Let us show the first bullet. Assume that it holds

in some iteration. Pick such a finite trace 𝑛1 · · ·𝑛𝑘𝑛
′. We have three

cases: 𝑛′ ∈ 𝑅𝑒𝑡 , 𝑛𝑘 ∈ 𝑁 , and 𝑛𝑚 ∈ 𝑁 where𝑚 < 𝑘 . For the first

and the third cases, it is easy to show the invariant is maintained

in the next iteration. In the second case, we have 𝑛′ ∈ next(𝑛𝑘 ) by

definition of the traces. Then 𝑛′ is added to 𝑅𝑒𝑡 in line 23, since

𝑛′ ∈ 𝐶𝑖 , and we conclude. □

Note that if we replace the if-condition of line 11 with ł∀𝑛 ∈

𝑁1 . 𝑛.color = blackž, then it suffices to show 𝑇1 ≤A 𝑇2, i.e., 𝑇1
refines 𝑇2.

9 CONCLUSION

We have presented a novel algorithmic approach for proving cross-

language program equivalence. Our algorithm relies on cut-bisimu-

lation, a general formalization of weak bisimulation relations that

is better suited to equivalence proofs when the two programs may

have unrelatable intermediate states. Two out of three key compo-

nents of our equivalence checking algorithm ś the formal notion

of program equivalence, and the proof system that generates and

checks equivalence proofs for given verification conditions ś are

entirely independent of specific transformations. This enables the

reuse of a significant part of the TV system and allows developers

to focus on the important aspects of the problem, which are the

semantic definitions of the input and output languages and the gen-

eration of the proof obligations. Moreover, cut-bisimulation allows

for generation of proof obligations that take the intuitive (from a

compiler’s perspective) form of synchronization points between

the input and output programs. We have used this algorithm to de-

velop the first language-independent tool for program equivalence,

and a prototype TV system for a major translation phase of the

LLVM compiler infrastructure, instruction selection. In the future,

we aim to leverage the work presented in this paper to develop an

end-to-end TV system for LLVM-based compilers.
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A ARTIFACT APPENDIX

A.1 Abstract

The artifact accompanying this paper is publicly available in Zen-

odo: https://doi.org/10.5281/zenodo.4322105. The artifact is pack-

aged as a VirtualBox image. We recommend using VirtualBox ver-

sion 6.1 or later to import the image and create a virtual machine.

The virtual machine contains pre-installed software dependencies,

a pre-built set up of our Translation Validation system along with

its source code, as well as all the input files required to reproduce

the experiments in the paper.

A.2 Artifact Check-List (Meta-information)
• Algorithm: Translation Validation of ISel phase of LLVM using

Keq

• Program: GCC benchmark from SPEC 2006. LLVM Bitcode of GCC

functions included.

• Compilation: LLVM 5.0.2. K framework with Keq tool. All in-

cluded.

• Binary: LLVM tool binaries, Keq tool. All included.

• Run-time environment: Linux (Ubuntu 20.04)

• Hardware: Recommended: 16 processing cores at >= 2.67GHz and

>= 80GB of memory.

• Howmuch disk space required (approximately)?: About 12GB

of disk space.

• How much time is needed to prepare workflow (approxi-

mately)?: Less than 30 mins.
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• How much time is needed to complete experiments (approxi-

mately)?: About 96 hours (with recommended hardware).

• Publicly available?: Yes

• Archived (provide DOI)?: Yes, in Zenodo (DOI 10.5281/zenodo.

4322105).

A.3 Description

A.3.1 How to Access. Download the VirtualBox image from Zen-

odo: https://doi.org/10.5281/zenodo.4322105. Import the image to

VirtualBox, preferably version 6.1 or later. You can access the arti-

fact from within the created virtual machine. The image (.ova file)

is 3.6GB large. The virtual machine requires about 12GB of disk

space.

A.3.2 Hardware Dependencies. If it is desired to reproduce the

full GCC experiment mentioned in the paper, we recommend 16

processing cores at 2.67GHz and a total of 80GB of memory for the

host system. This (or better) hardware will allow the completion of

the full experiment in about (or less) 96 hours.

A.3.3 Software Dependencies. We recommend VirtualBox version

6.1 or later.

A.4 Installation

Open the downloaded VirtualBox image (.ova file) with VirtualBox.

If VirtualBox is installed in your system, you can simply double-

click the .ova file. An import wizard window will open that allows

for editing various settings for the about to be created virtual ma-

chine. Please edit the number of CPU cores and amount of RAM

memory according to the specifications of your host system. Then

click import to generate the llvm-verified-backend virtual machine.

Afterwards, you should be able to see the virtual machine listed in

the left side of the main window of the VirtualBox application. To

start the virtual machine, select it from the list and click the Start

button. The virtual machine is an Ubuntu 20.04 Linux system and

you will be logged in as the lvb user (with password asplos).

The virtual machine contains all software dependencies of our

Translation Validation system installed. It also contains our system

pre-built and ready to be used for experiments. Finally, it contains

a README file (found in /home/lvb/Desktop/README.md) with

instructions on how to run the experiments in the paper as well as

individual tests of translation validation with Keq. For complete-

ness, it also contains instructions on how to build and set up the

Translation Validation system from its source code, which is also

provided in the virtual machine.

A.5 Experiment Workflow

We provide a Python script run-tests.py (found in

/home/lvb/Desktop/llvm-verified-backend/scripts/) that is

invoked to run experiments with our Translation Validation system.

The script is given an LLVM IR function, it then applies the LLVM

ISel pass to generate an output Virtual x86 function, it generates a

set of synchronization points for the two programs, and it runs Keq

with these points to validate the translation. It can be used with

different options to run single tests, batches, or the whole GCC

experiment mentioned in the paper. The aforementioned README

file contains instructions for all the above use cases.

A.6 Evaluation and Expected Results

This artifact allows the reproduction of the GCC experiment men-

tioned in the paper. We compile 4732 supported functions of the

GCC SPEC 2006 benchmark from LLVM IR to Virtual x86 using the

ISel pass of LLVM. We then validate the translations with Keq. In

order to reproduce the GCC experiment, the user needs to invoke

the Python script run-tests.py with a batch of functions that is

the whole set of GCC functions supported by our system. The afore-

mentioned README file contains instructions on how to invoke

run-tests.py to repeat the experiment as well as a recommended

set of performance flags. Unfortunately, we cannot be certain that

exactly the same number of functions as reported in the paper will

be validated, because there may be differences in how many func-

tion validations timed out or went out of memory depending on

the available hardware resources.

A.7 Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-

and-badging-current

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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