
Cazamariposas: Automated Instability Debugging
in SMT-based Program Verification

Yi Zhou �, Amar Shah , Zhengyao Lin , Marijn Heule , and
Bryan Parno

Carnegie Mellon University, Pittsburgh, PA, USA
{yizhou5,amarshah,zhengyal,mheule,bparno}@cs.cmu.edu

Abstract. Program verification languages such as Dafny and F⋆ often
rely heavily on Satisfiability Modulo Theories (SMT) solvers for proof
automation. However, SMT-based verification suffers from instability,
where semantically irrelevant changes in the source program can cause
spurious proof failures. While existing mitigation techniques emphasize
preemptive measures, we propose a complementary approach that fo-
cuses on diagnosing and repairing specific instances of instability-induced
failures. Our key technique is a novel differential analysis to pinpoint
problematic quantified formulas in an unstable query. We implement this
technique in Cazamariposas, a tool that automatically identifies such
quantified formulas and suggests fixes. We evaluate Cazamariposas on
multiple large-scale systems verification projects written in three dif-
ferent program verification languages. Our results demonstrate Caza-
mariposas’ effectiveness as an instability debugger. In the majority of
cases, Cazamariposas successfully isolates the issue to a single problem-
atic quantifier, while providing a stabilizing fix.

Keywords: SMT · Program Verification · Proof Instability.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers play a prominent role in automated
program verification. In verifiers such as Dafny [22], F⋆ [30], or Verus [20], SMT
solvers can often discharge complex verification conditions automatically, despite
the generally undecidable program properties. In this way, SMT solvers signif-
icantly reduce the need for manual proof steps, facilitating the verification of
large-scale software systems [15,19,26].

However, the solvers must resort to incomplete heuristics to reason about un-
decidable program properties. Consequently, SMT-based program verifiers suffer
from a persistent problem of proof instability [16,34], where trivial, non-semantic
changes to the source program result in spurious proof failures. For instance, an
SMT solver may fail to verify (i.e., return an inconclusive result on) a previously-
proven verification condition after a simple variable renaming, even though the
program’s semantics remain unchanged.

Instability is a major impediment to the industrial deployment of automated
verification [12]. In particular, instability disrupts the usual development work

https://orcid.org/0000-0001-7597-1176
https://orcid.org/0009-0008-8282-2142
https://orcid.org/0000-0001-5475-5765
https://orcid.org/0000-0002-5587-8801
https://orcid.org/0000-0002-9113-1684

2 Y. Zhou et al.

flow, incurring time and resource costs to debug spurious failures. Worse yet, the
solver provides little insight as to why it rejects the modified query. As a result,
the developer has limited recourse beyond blindly modifying their source code
in the hopes of nudging the solver into an accepting state [31].

While prior work [1,21,33] has tried to preemptively mitigate instability (with
partial success—see Sec. 2), we propose a complementary approach to debug
and repair unstable SMT queries. In more detail, we automatically provide the
developer with query-specific repair strategies, targeting the quantified formulas
causing instability. In fact, for 61% the queries in our study, there is only a single
quantified formula to blame! In other words, we can repair most of the unstable
proofs by limiting the impact of just one ill-behaved quantified formula.

We introduce a differential analysis to identify such problematic formulas.
We leverage the fact that by definition [34], semantically equivalent variants of an
unstable query create a mix of verification successes and failures. We thus com-
pare the quantifier-instantiation profiles between succeeding and failing variants,
highlighting the formulas that are over/under-instantiated in the failing variants.
We further refine the analysis using novel proof and trace mining techniques, ex-
ploiting the causal relation between the instantiations.

We implement our analysis in Cazamariposas, an SMT-level instability de-
bugging tool. Cazamariposas takes as input an unstable SMT query Φ and pro-
vides a repair strategy as output. For example, suppose our analysis points to
an over-instantiated formula ϕ within Φ. Cazamariposas confirms that removing
ϕ from Φ stabilizes the query, and then it encourages the developer to remove
the source-level construct that introduced ϕ to Φ. Crucially, we ensure that the
repair strategy is sound with respect to program-verification semantics (Sec. 4).

We evaluate Cazamariposas on a diverse set of benchmarks, with 615 unstable
SMT queries collected from 12 system verification projects written in Dafny [22],
F⋆ [30], or Verus [20]. We find that Cazamariposas successfully repairs 70% of
the unstable queries, of which 87% involve a single quantified formula (Sec. 5).

2 Notation and Related Work

2.1 Notation

We use a conjunctive formula Φ =
∧n

i=0 ψi to represent an SMT query, where
each ψi is an assertion. We slightly abuse the notation here by treating Φ as a
set of assertions. For example, we use Φ\{ψ} and Φ∪{ψ} to denote a new query
with an assertion ψ removed or added, respectively.

We assume the goal-axioms structure in program verification queries [33].
In particular, ψ0 = ¬θ is the negation of the properties of the procedure under
verification. Meanwhile, Λ =

∧n
i=1 ψi is a conjunction of axioms encoding the

semantics of: (1) the verification language’s constructs, and (2) other developer-
written procedures that have already been verified. By checking that Φ = Λ∧¬θ
is unsatisfiable, the SMT solver confirms that θ is a logical consequence of Λ.

The use of quantifiers is common in program verification. For ease of exposi-
tion, we use single-variable quantified formulas (e.g., ϕ = ∀x.φ) as examples as

Cazamariposas: Automated Instability Debugging 3

long as it is clear how the method under discussion generalizes to quantification
over multiple variables. We use Ω to represent the set of quantified formulas
(including all the nested ones) in Φ.

For a universally quantified formula ϕ = ∀x.φ, we use φ[x 7→ t] to denote the
result of capture-free substitution of some ground term t for all free occurrences
of x in φ. We refer to φ[x 7→ t] as an instantiation of ϕ, and t as the instantiating
term. We use the calligraphic Iϕ to denote a set of instantiations of ϕ. For
convenience, we define Iϕ = {} if ϕ is existentially quantified.

We analyze the quantifier reasoning process based on solver-generated logs.
Concretely, for a given query Φ, we leverage the Z3 [11] solver to produce a pair
of proof and trace (p, t) logs where p is a proof tree of unsatisfiability [6], and t
records the all the solver-discovered instantiations. We use Iϕ

p and Iϕ
t to denote

the set of instantiations of ϕ in p and t, respectively.
SMT-based verification languages rely heavily on pattern-based quantifier

instantiation [23,24]. Each universally quantified formula ∀x.φ is associated with
(at least) one syntactic pattern π, where π would be a ground term expect for the
free variable x in it. The body φ remains hidden until a ground term π[x 7→ t]
enters the solver’s context, at which point the solver creates the instantiation
φ[x 7→ t]. We refer to π[x 7→ t] as the triggering term.

2.2 Related Work

Proof instability is an obstacle to wide-scale industrial adoption of SMT-based
verification. Galois highlights the “fragility of proofs” which can be “highly sensi-
tive to minor changes in logical terms” [12]. Similarly, Amazon complains about
the serious challenge of “lack of monotonicity and stability in runtimes” [28].
Numerous other large-scale verification projects cite SMT instability as a key
pain point [2,9,10,13,16,19,27].

In prior work, researchers applied source-program-level analysis to choose
better syntactic patterns for user-introduced quantified formulas, hoping to pro-
duce more stable SMT queries [21]. More recently, Bordis and Leino propose
using free facts [7], where quantified axioms are replaced by specific instantia-
tions before the query is dispatched to the solver. Both techniques have shown
some improvement, although they rely on ad hoc measures of instability.

In our Mariposa work [34], we presented a statistically rigorous approach
to characterizing proof instability. At a high level, the Mariposa tool takes in
an SMT query-solver pair (Φ, s), and outputs whether the query Φ is stable,
unstable, or unsolvable when run with solver s. Intuitively, Mariposa generates
semantically-equivalent mutants of Φ and if the solver’s performance varies sig-
nificantly across the mutants, Φ is unstable on s.

Mariposa creates the mutants by (1) reordering assertions, (2) α-renaming
variables, or (3) changing the random seed. Therefore, for two mutants Φ1 and
Φ2 of Φ, there is a one-to-one correspondence in terms of the function symbols
and the formulas between Φ1 and Φ2. It is thus possible to compare how the
“same” quantified formula ϕ is instantiated in Φ1 and Φ2, even though ϕ may
appear in different forms.

4 Y. Zhou et al.

As part of the Mariposa project, we also curated a collection of program veri-
fication queries. In particular, we included several large-scale systems-verification
projects written in Dafny [22] and F⋆ [30] as a part of the Mariposa benchmark
suite, where we found non-trivial amounts of instability.

In our follow-up work, we demonstrate that proof stability is strongly con-
nected to the relevance of axioms [33]. In general, given a verification goal θ, if
Λ is populated with unnecessary or irrelevant axioms, then the query is more
likely to experience instability. We then introduce Shake, a context-pruning
technique that reduces the number of irrelevant axioms in program verification
queries, mitigating the instability on the Mariposa benchmark suite by 29% on
Z3 and 41% on cvc5.

Amrollahi et al. preprocess an SMT query to put it into a canonical form [1] so
as to normalize away semantically irrelevant source-level changes. They demon-
strate mixed results, reducing instability on one Mariposa benchmark by 20%,
while increasing it on another by 76%. Cumulatively, their approach increased
instability by 4%.

In contrast to these approaches based on preemptive preprocessing, in this
work, we propose to diagnose and repair specific instances of unstable proofs. Our
approach draws inspiration from the field of automated theorem proving [18,29].
In particular, our query-specific diagnosis draws a parallel to the axiom selection
problem [17], where the goal is to select a small subset of axioms from a large
set of axioms to prove a theorem. Oftentimes, axiom selection is done using
techniques from machine learning [5].

3 Motivating Examples

When a programmer encounters instability, fixing it often requires considerable
effort. When a proof in an automated verification language fails, conventional
wisdom suggests various manual debugging techniques [25,31,32], including:
1. Adding source-level assertions to help guide the solver towards deriving im-

portant intermediate facts, and to trigger important quantifiers.
2. Adding source-level annotations to hide function definitions that are un-

necessary for the proof. These annotations cause the verifier to encode the
function such that the SMT solver treats it as uninterpreted.

We observe that these techniques target different problems at the SMT level.
When the solver quickly returns unknown because of insufficient information,
this may be addressed at the source level by adding source-level assertions. If
the solver “times out” because it has spent too much time exploring extraneous
parts of the proof space, this may be addressed at the source level by hiding
unnecessary functions definitions.

In Sec. 4.3, we describe how Cazamariposas is able to automatically differen-
tiate between the two cases above and suggest the appropriate fixes. In contrast,
developers often struggle to find such fixes. To illustrate this, below we present

Cazamariposas: Automated Instability Debugging 5

two examples 1 from the Verus benchmarks (Sec. 5.2) where Cazamariposas
identifies a fix that the original programmers missed.

3.1 Diagnosing and Repairing Unnecessary Instantiations

Our first example, a lemma lemma_from_after written in Verus, has an unstable
proof. In the original source code, the developer added a Verus annotation ask-
ing the solver to spin off a separate SMT query just for this lemma (normally
Verus proves many goals incrementally in the same SMT context). Verus devel-
opers often use this annotation to try to improve stability, but Cazamariposas’
measurements indicate it is still unstable.

To fix this proof’s instability, the developer can try to hide various functions
definitions using Verus’s hide keyword. However, from the developer’s perspec-
tive, it is not obvious which function might be to blame for the instability. The
file containing lemma_from_after has 6 function definitions, and it imports 27
other Rust crates, each of which contributes many more functions that might be
causing the instability. A priori, it is not even clear that hiding a function defini-
tion is the correct fix. The developer might instead guess that adding assertions
to the body of lemma_from_after will improve stability.

In contrast, Cazamariposas explains that make_stateful_set is the cause, an
unrelated function imported from a completely different crate. Cazamariposas
suggests that the developer hide make_stateful_set, which produces a stable
SMT query.

3.2 Diagnosing and Repairing Missing Instantiations

In the Verus code below, the function entry_alive_wraps on line 7 proves
that every index i from low to high is alive if and only if BUFFER_SIZE + i is
alive. Liveness is defined via entry_alive, which among other operations, per-
forms a division. At the SMT level, Verus represents division with the function
Euc_Div, which is guarded to prevent division by 0. The original SMT query for
entry_alive_wraps is unstable because the solver gets stuck going from Euc_Div
to SMT-LIB’s built-in division operator. As a developer, diagnosing such is quite
difficult, let alone finding a fix.

1 const BUFFER_SIZE = ...
2
3 fn entry_alive(i: int) −> bool {
4 (i / BUFFER_SIZE) % 2 == 0
5 }
6
7 fn entry_alive_wraps(low: nat, high: nat)
8 ensures forall|i: nat|low <= i < high ==>
9 entry_alive(i, BUFFER_SIZE) == entry_alive(i + BUFFER_SIZE, BUFFER_SIZE)

10 {}

In contrast, Cazamariposas automatically diagnoses the problem at the
SMT level and suggests a fix. At the SMT level, the ensures clause on
1 We have simplified the examples here and placed the full versions in our technical

report [35].

6 Y. Zhou et al.

entry_alive_wraps is negated, turning the universal quantifier on line 8 into
an existential. Cazamariposas experiments with Skolemizing the quantified vari-
able (i.e., turning it into a constant) and then searches for universal quantifiers
in the query that might benefit from instantiation with the new Skolem con-
stant. In this case, it identifies an instantiation of a quantifier about Euc_Div
that stabilizes the proof. It suggests this fix to the developer, who can then use
appropriate Verus-level syntax to apply the fix.

4 The Cazamariposas Methodology

Cazamariposas produces SMT-level query edits as repair strategies for proof
instability. For example, given an unstable query Φ, Cazamariposas may pinpoint
a quantified axiom ϕi (for i ̸= 0) such that Φ∗ = Φ \ {ϕi} is stable. (We note
that removing ϕi is sound since Φ∗ maintains the original verification goal.) The
developer can then apply an analogue of this SMT-level edit as a source-level
change (e.g., hiding the procedure axiomatized by ϕi in this case), stabilizing
the proof.

Cazamariposas follows an “edit-and-test” scheme to identify stabilizing repair
strategies. Conceptually, for each quantified axiom ϕi ∈ (Λ∩Ω), Cazamariposas
goes through the following:
• Hypothesize that quantifier reasoning over ϕi is the cause of instability.
• Select a query edit on Φ to reduce the reasoning obligations over ϕi.
• Apply the query edit to create a candidate query Φ∗.
• Test the stability of Φ∗ using Mariposa.
• If Φ∗ is not stable, dismiss the hypothesis for now.
• If Φ∗ is stable, report ϕi as a cause of instability.

In Sec. 4.1, we discuss how we ensure that a query edit (1) weakens a particular
target axiom, and (2) preserves the rest of the query context. With this design,
if Φ∗ is stable, the edit is also a sound repair strategy.

While the “edit-and-test” scheme is conceptually simple, the vast number of
quantified axioms makes it impractical to exhaustively test the stability impact
of each ϕi individually. Therefore, as illustrated in Figure 1 and described in Sec.
4.2-4.4, Cazamariposas must efficiently prioritize the likely suspects. In particu-
lar, we leverage the fact that an unstable query Φ has at least one passing mutant
Φs and one failing mutant Φf . This allows us to compare the instantiations of
ϕi between Φf and Φs, as we explained in Sec. 2.

More concretely, we obtain from the solver a trace log t for Φf , and a proof
log p for Φs. In theory, our method generalizes to multiple traces and proofs. In
practice, collecting even one pair of (t, p) can entail difficulties (Sec. 5). Hence,
we focus our discussion on one such pair. We use Iϕi

t and Iϕi
p to denote the

instantiation set of ϕi in t and p, respectively.
We first triage (Sec. 4.2) which kind of instability-induced failure we face:

either a quick unknown (QU) or a slow timeout (TO). We then compute key
metrics to distinguish the potentially problematic quantified axioms (Sec. 4.3).
Next, using the metrics and the failure mode, we select the query edits most

Cazamariposas: Automated Instability Debugging 7

Query Φ
Is it

stable?

The query is stable ✓

Passing
Mutant Φs

Proof p

Failing
Mutant Φf

Trace t

Triaging
QU vs. TO
(Sec. 4.2)

Differential
Scoring

(Sec. 4.3)

ϕ1 : Metrics(ϕ1)

ϕ2 : Metrics(ϕ2)
...

ϕN : Metrics(ϕN)

Differential Scores

QU
Ranker

TO
Ranker

Rank the Can-
didate Queries
(Sec. 4.4)

...

Candidate
Query Φ∗

1

Candidate
Query Φ∗

k

Any
Stabilizing

Edits? No Fix
Found ×

Stabilizing
Fix ✓

YES

NO

NO

YES

NO

Fig. 1: The Design of Cazamariposas. We have colored the SMT queries , data ,
and Mariposa calls . We use Metrics(ϕi) to represent the metrics in Sec. 4.3.
For simplicity, we have omitted doubleton edits.

likely to stabilize the query (Sec. 4.4). Finally, we use Mariposa to evaluate the
edits, and if any succeed in stabilizing the query, we report success and suggest
the corresponding edit as a repair.

4.1 Testing the Axioms for Stability

We start with our methodology to evaluate the stability impact of an individual
axiom using query edits leveraging the proof log p. More formally, we define a
singleton edit as a pair (ϕi, ai), where ϕi ∈ (Λ ∩ Ω), and ai is an action among
the following:
• del: delete ϕi from the query.
• inst: augment ϕi with its proof instantiations (i.e., Iϕi

p) as new axioms.
• inst-del: replace ϕi with Iϕi

p in the query.
• sk: Skolemize an existentially quantified assertion, ϕi.

We formally define the edits in Table 1. We use fϕix to denote a Skolem constant
from some existential assertion ϕi = ∃x.φ.

Action ai Applicability ϕi Edited Candidate Φ∗

del ϕi ∈ (Λ ∩ Ω) Φ \ {ϕi}
inst

ϕi ∈ Λ, ϕi = ∀x.φ Φ ∪ Iϕi
p

inst-del (Φ ∪ Iϕi
p) \ {ϕi}

sk ϕi ∈ Φ, ϕi = ∃x.φ (Φ ∪ {φ[x 7→ fϕix]}) \ {ϕi}
Table 1: Cazamariposas Query Edits

8 Y. Zhou et al.

Intuitively, the edits are meant to reduce or eliminate a solver’s reasoning
over ϕi, so a stabilized candidate also points to ϕi as a cause of instability. We
now discuss some basic properties of the edit actions, including soundness, which
ensures that a stabilizing edit is also a valid repair strategy.

Soundness. We define the soundness of the candidate Φ∗ as:

Φ∗ ⊢ ⊥ =⇒ Φ ⊢ ⊥

We demonstrate soundness with a case analysis. When ai = sk, the queries Φ∗

and Φ are equivalent, so soundness trivially holds. Since we have restricted sk
to be the only potential action on the goal, θ remains unchanged for the rest of
the actions. Therefore, we could instead show that:

Λ∗ ⊢ θ =⇒ Λ ⊢ θ

which holds as long as Λ∗ is no stronger than Λ. When ai = inst, because the
elements of Iϕi

p are tautological consequences of ϕi, Λ∗ is as strong as Λ. When
ai ∈ {del, inst-del}, Λ∗ might be weaker than Λ.

Completeness. We define completeness of the axiom set as follow:

Λ ⊢ θ =⇒ Λ∗ ⊢ θ

The proof instantiation set Iϕi
p is sufficient to establish θ by definition, so we

maintain completeness. However, since the edits may weaken the axioms, we
do sacrifice a broader sense of completeness. Specifically, del and inst-del may
remove a quantified axiom ϕi, while the Iϕi

p is only a finite subset of all possible
instantiations of ϕi. Therefore do not guarantee that Λ∗ ⊢ ϕi.

Composability. We note that if we perform a series of singleton edits ∆ =
⟨..., (ϕi, ai), ...⟩, we also maintain soundness and completeness. Intuitively, when
instability arises from the interaction of multiple quantified axioms, singleton
edits (i.e., ∥∆∥ = 1) might fail to capture the cause, and thus we need to consider
∥∆∥ ≥ 2. In the case where ∥∆∥ = 2, we call ∆ a doubleton edit.

Practicality. In Cazamariposas, we focus on the SMT level to ensure ap-
plicability to multiple languages. Eventually, we would like to apply the edit
actions to the source code, which we leave as future work. The query edits do
generally correspond to source-level features in Dafny, F⋆, and Verus:
• del corresponds to source-level visibility control mechanisms. For example,

Dafny’s opaque keyword hides the definition of a function.
• inst corresponds to quantifier instantiations as source-level annotations.
• sk corresponds to Hilbert’s choice as a language construct. For example,

Dafny’s var x :| P(x) assigns x an arbitrary value such that P(x) holds.
However, the translation might not always be straightforward. As we dis-

cussed in Sec. 2, the axioms may also encode the semantics of language con-
structs. For example, del on an axiom for higher-order functions has no direct
source-level equivalent. More specific to inst, if the repair adds a large number
of instantiations to the source code, it is arguably impractical due to mainte-
nance and readability concerns. Nevertheless, we have some empirical evidence

Cazamariposas: Automated Instability Debugging 9

that the repairs are often practical, which would make it interesting to explore
automatic translation in the future.

Complexity. Another more pressing concern is the complexity of the search
space. Consider a query Φ with n applicable singleton edits. The total number
of potential candidates is roughly:

∥∆∥∑
i=1

(
n

i

)
=

(
n

1

)
+

(
n

2

)
+ ...+

(
n

∥∆∥

)
The combinatorial explosion makes it infeasible to test all candidates. Mean-
while, if a stabilizing edit involves too many axioms, it also become less realistic
to reenact the repair at the source level.

Given these considerations, we limit our experiments to two classes: singleton
and doubleton edits, i.e., ∥∆∥ ≤ 2. Nevertheless, a massive search space remains
for each class, with typically thousands of quantified axioms in a query. We thus
further introduce a parameter k to limit the number of candidates we test for
full stability. Specifically, we first test k singleton edits, and then k doubleton
edits if the former fails to stabilize the query.

4.2 Triaging the Failure Mode

Given our methodology to test the stability of individual axioms, we now discuss
how to select the most promising candidates. We begin by triaging the high-level
cause of the underlying instability. Specifically, we observe two distinct modes
of an instability-induced failure, which we name quick unknown (QU) and slow
timeout (TO). In a QU, the solver quickly terminates (e.g., in < 1 second) with
an unknown result, despite being given a generous timeout and resource limit.
Meanwhile, for a TO, the solver runs on the query until it runs out of its time
budget.

As we discuss in depth in Sec. 5.3, the two failure modes correspond to dif-
ferent instantiation profiles, signifying different underlying causes of instability.
In a QU, the solver only explores a small number of instantiations before giving
up. We therefore hypothesize that the solver is failing because it is missing key
instantiations to prove the goal θ. In contrast, a TO is associated with orders of
magnitude more instantiations, suggesting that the solver is spending significant
time and resources on quantifier reasoning irrelevant to θ.

4.3 Calculating the Differential Metrics

We now introduce measures to quantify the degree of insufficient or excessive
instantiation. We define the metrics for quantified formula ϕi ∈ Ω, levering the
proof instantiation set Iϕi

p and the trace instantiation set Iϕi
t . (In Sec. 4.4, we

discuss how to aggregate the metrics to rank potential edits over the quantified
axioms.) Specifically, we compute the following metrics here:

10 Y. Zhou et al.

• Deficit(ϕi, p, t) = ∥Iϕi
p-t∥, where Iϕi

p-t = Iϕi
p \ Iϕi

t . Intuitively, Iϕi
p-t is the set

of instantiations in the proof but not in the trace. When ∥Iϕi
p-t∥ is large, the

solver may be missing instantiations of ϕi that are crucial to reaching unsat.
• Excess(ϕi, p, t) = ∥Iϕi

t-p∥, where Iϕi
t-p = Iϕi

t \ Iϕi
p . Intuitively, Iϕi

t-p is the set
of instantiations in the trace but not in the proof. When ∥Iϕi

t-p∥ is large, the
solver may be wasting time and resources instantiating ϕi without making
progress towards proving the goal.

When ϕi is existentially quantified, Iϕi
t and Iϕi

p are both empty, so Deficit and
Excess are trivially 0. In that case, we introduce the following metric based on
the instantiations that depend on ϕi:
• Contingency(ϕi, p) =

∑
ϕj∈Ω ∥{I | I ∈ Iϕj

p , fϕix ⊑ I}∥, where ϕi creates the
the Skolem constant fϕix , ϕj ∈ Ω is some (universally) quantified formula,
I ∈ Iϕj

p is some instantiation of ϕj containing fϕix , and fϕix ⊑ I denotes
that fϕix

is a sub-term of I. Intuitively, the metric reflects the proof instan-
tiations that depend on fϕix

. When ϕi has a high Contingency score, other
quantified formulas cannot be sufficiently instantiated until ϕi is Skolemized.

Naively, we could already start prioritizing the quantified axioms based on
these scores alone, but this would provide only crude guidance without con-
sidering the dependence between the formulas. Thus, we next discuss how we
aggregate the scores and choose the most promising edit actions for each axiom.

4.4 Ranking the Candidate Queries

As mentioned in Sec. 4.1, we use a parameter k to limit the number of candidates
we test for full stability, where we first consider top-k singleton edits, and then
doubleton edits if none of the singleton edits is stabilizing. We describe how to
compute the scores for the singleton and doubleton edits in this section. The
output of this stage are two partial maps, SScore and DScore.
1. We score each axiom ϕi, and then select an appropriate edit for it. When

there are multiple possible actions on ϕi, we commit to one that is likely
stabilizing. More formally, we create a partial map:

SScore = {(ϕi, ai) 7→ si | ϕi ∈ Φ}

where ai ∈ {del, inst, inst-del, sk} is the chosen edit action.
2. We then score ordered pairs of quantified assertions, along with the most

promising actions for each assertion. More formally, we create another partial
map:

DScore = {⟨(ϕi, ai), (ϕd, aj)⟩ 7→ sij | ϕi, ϕj ∈ Φ}
where ai, aj ∈ {del, inst, inst-del, sk} are the chosen edit actions.
⟨(ϕi, ai), (ϕj , aj)⟩ is the doubleton edit we apply (in order). We note that
both maps are partial because we may not find an applicable action for
certain assertions.
We split the discussion on the ranking of edits based on the hypothesized

failure mode (QU or TO), as the two failure modes require different strategies.

Cazamariposas: Automated Instability Debugging 11

Ranking Edits for QU We start with how we handle QU failures, which is
more straightforward. At the general triage (Sec. 4.2) stage, we hypothesize that
the QU failures are due to the absence of certain instantiations. Intuitively, we
are looking for under-instantiated axioms, where inst is applicable, i.e.,

SScore = {(ϕi, inst) 7→ si | ϕi ∈ Φ}

There are various ways to use the differential scores to set si. Plausible contenders
include:
1. (Deficit,−Excess)
2. (−Excess,Deficit)
3. κ · Deficit − Excess (for some constant κ)
4. Deficit/Excess

We experimented with multiple examples of each of these heuristics. Eventually
we settled on the first one, using Deficit as the primary metric.

However, the picture becomes complicated when instantiations contain
Skolem constants. In that case, we cannot fully materialize all of ϕi’s proof
instantiations Iϕi

p , unless all its Skolem dependencies are met. If the actual ma-
terializable instantiation count is 0 (indicating that no instantiations can be
created without Skolemization), then we drop ϕi in the singleton phase.

We address this issue in the doubleton stage. Specifically, we use the Contin-
gency score to select the first axiom ϕi for sk; i.e., the quantified assertion with
the most “contingent” instantiations depending on its Skolem constant. When
choosing the second axiom ϕj , we only consider ϕj candidates that depend on
the Skolem constant fϕix in their instantiations, and we can apply inst to ϕj .
More formally,

DScore = {⟨(ϕi, sk), (ϕj , inst)⟩ 7→ sij | ϕi, ϕj ∈ Φ}

where sij = (Contingency(ϕi, p),Deficit(ϕj , p, t)), and ∃I | I ∈ Iϕj
p , fϕix ⊑ I.

Ranking Edits for TO In the general triage stage (Sec. 4.2), we hypothesize
that in a TO failure, the solver is spending significant time and resources on
irrelevant quantified formulas. For this failure mode, we focus on the quantified
axioms in Λ as targets. Intuitively, we want to suppress the excessive instanti-
ations in order to stabilize the query, under the constraint that we cannot edit
the goal itself (since we want to our edits to preserve soundness).

A natural choice would be to use the Excess for SScore, and then apply del
to the axiom ϕi with the highest Excess. However, the situation is more complex
than QU in two ways. (1) We cannot simply delete an arbitrary ϕi with a high
Excess. The axiom may be necessary for the proof, and deleting it will render
the goal un-provable (i.e., creating incompleteness). (2) Even if ϕi is indeed
unnecessary, other excessively instantiated axioms may also be contributing to
the instability.

Problem (1) is easier to address. We use the inst-del edit action, replacing
the axiom ϕi with its instantiations from the successful proof trace Iϕi

p . Intu-
itively, this eliminates the need (and the ability) for the solver to instantiate ϕi:

12 Y. Zhou et al.

since Iϕi
p is sufficient for the proof, this action works around the incompleteness

issue.
Problem (2) is more challenging. Anecdotally, if we focus solely on the Excess

score, the debugging process turns into a “whack-a-mole” situation, where we
delete one axiom, only to find another axiom with high Excess taking its place,
and we fail to stabilize the query. Hence, to successfully repair the query, we need
a mechanism to identify the underlying cause of the excessive instantiations.
Dependency Analysis In order to locate the root cause of TO instability,
we further analyze the causal relations between the instantiations. Our notion
of causality extends the instantiation graph from the SmtScope (formerly the
Axiom Profiler) [4], a tool to analyze instantiation loops and other sources of poor
performance in pattern-based SMT solvers. Below, we describe Axiom Profiler’s
approach and then our extension.

The instantiation graph is a directed acyclic graph over the terms (instan-
tiations) in a trace log t. More formally, we model this as a graph G0 with the
node set:

{(I, ϕi) | I ∈ Iϕi
t , ϕi ∈ Ω}

where each instantiation is labeled with its quantified formula ϕi. Edges in the
graph indicate the causal relations, which include the following:
• Instantiating Dependency: an instantiation causes another one to mate-

rialize due to a matched pattern. Let (Is, ϕs) and (Id, ϕd) be two nodes in
G0, where ϕd = ∀x.φj is guarded by the pattern πj . Suppose a sub-term of Is
matches πj , i.e., πj [x 7→ t] ⊑ Is for some ground term t. This match triggers
the creation of Id = φj [x 7→ t], corresponding to an edge (Is, ϕs) → (Id, ϕd)
in G0.

• Equational Dependency: an equational rewrite (from one instantiation)
contributes to another instantiation. Continuing the example above, Is may
only trigger πj after additional equality rewrites. Consider a quantified for-
mula ϕeq = ∀x.p(x) ∼= q(x) and one of its instantiations Ieq = p(a) ∼= q(a).
The solver might have to rewrite Is with Ieq first, and then the rewrite re-
sult, Is[p(a) 7→ q(a)], triggers the creation of Id. In that case, there is also
an edge (Ieq, ϕeq) → (Id, ϕd) in G0.

We further extend this graph G0 from prior work into a graph G1 to capture
two additional types of dependencies.
• Skolemizing Dependency: a Skolem constant is a sub-term of an instanti-

ation. Consider the existentially quantified ϕi = ∃x.φi with Skolem constant
fϕix

. There might be some node (Id, ϕd) in G1 such that fϕix
⊑ Id. In that

case, we add the node (fϕix , ϕs), and the edge (fϕix , ϕs) → (Id, ϕd) to G1.
This form of dependency follows the same intuition as in our definition of
Contingency, except we apply it to the trace log here.

• Nesting Dependency: an instantiation is a (previously-nested) quantified
formula, which creates further instantiations. For example, consider (Is, ϕs),
where ϕs = ∀x.(f(x)∧∀y.g(x, y)), and Is = f(t)∧∀y.g(t, y) for some ground
term t. Let ϕd = ∀y.g(t, y) be the nested quantified formula. Intuitively, Is is

Cazamariposas: Automated Instability Debugging 13

the reason why ϕd exists at all. We thus add an edge from (Is, ϕs) to every
(Id, ϕd), where Id ∈ Iϕd

t .
The graph G1 captures the four types of dependencies we discussed above,

which offers a rather low-level view of the instantiation reasoning in the trace.
We further process G1 so that it reflects the relation between the quantified
formulas.
1. We collapse G1 into a multi-edge graph G2. We initialize G2 with Ω as its

nodes. For each edge (Is, ϕs) → (Id, ϕd) in G1, we create an edge ϕs → ϕd.
2. We reduce G2 into a weighted simple graph G3. For each pair of neighboring

nodes ϕs and ϕd with ms,d parallel edges in G2, we keep one edge ϕs → ϕd
in G3 with the weight ms,d.

3. We normalize the edge weights in G3, where we set the weight for ϕs → ϕd
in G3 to:

ws,d =
ms,d∑

ϕi→ϕd
mi,d

Intuitively, ws,d reflects the normalized “impact” of ϕs on ϕd over all the
in-coming edges (via other ϕi) to ϕd.
Hence the output of our dependency analysis is a directed simple graph G3

over Ω, where each edge weight ws,d captures (or rather, approximates) the
normalized impact of ϕs over ϕd. For example, ws,d = 0.5 signifies that ϕs has
an immediate impact on 50% of the instantiations of ϕd.

We then compute the transitive impact through fixed-point iterations. Con-
cretely, for ϕi ∈ Λ, we consider the reachable subgraph Gϕi

in G3. We initialize
a ratio rd = 0 for each ϕd in Gϕi

, except for ϕi, where we set ri = 1. We then up-
date each ratio rd =

∑
s rs ·ws,d. After the fixed-point computation terminates,

we use the weighted sum of Excess as the final score for ϕi:

SScore = {(ϕi, ai) 7→
∑
ϕj∈Ω

Excess(ϕj , t, p) · rj | ϕi ∈ Λ}

The fixed-point computation is non-decreasing by transitivity. However, there
is no theoretical guarantee that it will converge. In particular, when Gϕi

contains
a cycle, a node’s ratio may approach a limit at an exponentially decaying rate.
Nevertheless, this is not a threat to practical usage. In particular, since floating
point numbers represent the ratios, the convergence criteria must be threshold-
based. For our implementation, we consider a ratio to have converged if its
increment from the previous iteration is ≤ 10−4.

Now that we have the scores for each axiom, we proceed to choose the single-
ton edit action. We do so with a simple heuristic: if we can delete an axiom with-
out causing incompleteness, we choose del. Otherwise, we instantiate the axiom
with its proof instantiations, using inst-del. However, if there is Skolemization
dependency preventing us from fully materializing the proof instantiations, we
choose inst instead. Finally, if we have no other choice beyond Skolemization
(sk), we select it.

Given this setup, ranking the doubleton edits is simple. We use the fixed-point
computation to estimate the impact of each pair of axioms; i.e., we initialize

14 Y. Zhou et al.

ri = 1, rj = 1 for the pair (ϕi, ϕj), and then iterate over the nodes in G3 to
update the ratios. We then use the same weighted sum of Excess to calculate
the final score for each pair. We also use the same heuristic to choose the edit
actions for each pair.

5 Evaluation

In this section we perform an evaluation of Cazamariposas. We start with a
brief overview of the implementation in Sec. 5.1, followed by a discussion of the
benchmarks used in our evaluation Sec. 5.2. We then present the results of our
evaluation, structured around two research questions: (1) Does the experimental
data support our hypothesis about the different failure modes? and (2) How
effective is Cazamariposas at identifying stabilizing edits?

5.1 Implementation

Our implementation of Cazamariposas is in 4,730 lines of Python, publicly avail-
able on GitHub [8], as a part of the Mariposa tool-chain. Here we also discuss
our use of other tools and the configuration settings.

Mariposa We use Mariposa twice in our workflow, first to test whether the
initial query Φ is stable and finally to test whether our various fixes are stable.
We run Mariposa with its standard configuration, creating 180 total mutants for
each query for full stability test. We use the default timeout of 60 seconds for
the Mariposa benchmarks, but for the Verus benchmarks, we align the timeout
limit with the project artifacts, which use 10 seconds.

Z3 We use a recent version of the Z3 solver (4.13.0). We evaluate Cazamariposas
with Z3, as Dafny, F⋆, and Verus are designed with Z3 in mind. Past work [34]
has shown that other solvers such as cvc5 [3] and Vampire [18] are not optimized
for these verification languages, resulting in large numbers of unsolvable queries.

Z3 provides proof-production functionality, which can be complicated to use
in practice. Enabling proof production often causes Z3 to take a different path,
completely failing on an otherwise solvable query. To work around this, we have
employed the following strategies: (1) use Z3 to find an unsatisfiable core first
and then produce a proof from the core, (2) use 4 different versions of Z3 solver,
(3) use an extended timeout of 1 hour, and (4) use up to 256 mutants. We note
that these configuration are for finding proofs, not for testing stability. Despite
all of these strategies, we were unable to get proofs for 4 Mariposa queries and 3
Verus queries. In our evaluation, we count these cases as if Cazamariposas fails
to find a fix. Ideally the proof-production failures can be addressed within the
SMT solver.

SmtScope We created a fork of SmtScope [14] to parse the Z3 trace logs, and
then we enhance their instantiation graph as described in Sec. 4.4.

Cazamariposas: Automated Instability Debugging 15

5.2 Verus Benchmark Set

In addition to the Mariposa benchmark with 545 unstable queries (from five
systems projects written in Dafny and F⋆), we curate a new benchmark set
comprised of SMT queries from ten Verus verification projects. Between these
Verus projects, there are a total of 7,584 queries of which 7,514 (∼99%) are
stable and 70 (∼1%) are unstable. We refer the readers to a detailed breakdown
of projects in our technical report [35].

We conduct all of our stability tests, for benchmark creation and evaluation,
all on the same set of machines with an Intel Core i9-9900K (max 5.00 GHz)
CPU, 128 GB of RAM, and Ubuntu 20.04.3.

In summary, we evaluate Cazamariposas on 70 unstable Verus queries and
545 unstable Mariposa queries, for a total of unstable 615 queries.

5.3 Failure Mode Distinction

0.1 1.0 10.0 60.0
Time Until Failure Log Scale (seconds)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
(%

)

20.0%
14.0%

21.9%

43.5%

44.9%

Mariposa-bench

Verus-bench

(a) Bimodal Mutant Failure Time

1e3 1e4 1e5 1e6 1e7
Instantiation Count Log Scale

0

10

20

30

40

50

60

70

80

90

100

C
D

F
(%

)

270,3964,587

Mariposa TO

Mariposa QU

Verus TO

Verus QU

(b) Instantiation Count Distributions

Fig. 2: Failure Mode Distinction. In (a) we plot the runtime of the failed
mutants Φf , before the triage. In (b), we plot the instantiation count for the
failed mutants Φf based on the failure modes triage.

Cazamariposas’s first step is to triage a query’s failure mode into either quick
unknown (QU) or slow timeout (TO). Here we present empirical evidence for the
distinction. In Figure 2a, for each original query Φ in the benchmarks, we report
the runtime of its failed mutant Φf . The plot is in log scale, and we observe
that the distribution for each benchmark is bimodal. For Verus-bench, ∼43% of
the failures occur within 1 second, barely any occur between 1 and 10 seconds,
and the rest fail at 10 seconds. For Mariposa-bench, the distribution is more
spread out, but the separation is still clear, where ∼19% queries fail within 10
seconds, and ∼78% time out after 60 seconds. There is almost no middle ground
between the two modes. The x-axis of Figure 3 shows how many queries from
each benchmark Cazamariposas ultimately classifies as QU versus TO.

16 Y. Zhou et al.

In Figure 2b, we examine our hypothesis that QU failures are due to in-
sufficient instantiation, and TO failures are due to excessive instantiation. We
perform our triage, and then plot the instantiation counts based on the failure
modes. Note the log-scale on x-axis, which highlights that the TO failures have
orders of magnitude more instantiations than the QU failures. For example, in
Mariposa TO, the median instantiation count is 270, 396 while in Mariposa QU,
the median is 4, 587. The separation is also clear within Verus benchmark.

Mariposa TO(447)

Mariposa QU(98)

Verus TO(39)

Verus QU(31)

Overall(615)
0

20

40

60

80

100

B
en

ch
m

ar
k

Q
u

er
y

P
er

ce
n
ta

ge
(%

)

Unfixed

Doubleton Repaired

Singleton Repaired

Fig. 3: Percentage of Benchmark Queries Repaired.

5.4 Stabilizing Edits Found

Next, we evaluate Cazamariposas’ ability to automatically identify stabilizing
edits. Recall that Cazamariposas first tries k = 10 singleton edits, and if none
works, it tries 10 doubleton edits. Overall, Cazamariposas repairs 431/615 (≈
70%) of the benchmark queries. Figure 3 provides more details, reporting Caza-
mariposas’ performance on the two benchmarks, subdivided by the underlying
failure type (TO vs. QU). We note that Mariposa TO accounts for the largest
absolute number of queries. Cazamariposas appears to be more effective on Verus
queries in either failure type. Nevertheless, Cazamariposas repairs approximately
69% of the Mariposa queries and 77% of the Verus queries. This compares fa-
vorably to the best results from prior work (Sec. 2), which stabilized 29% of
the Mariposa benchmark. We also observe that 375/615 (≈ 61%) queries can be
stabilized with a single edit. Doubleton edits subsequently provide a small but
noticeable boost.

We also evaluate how well Cazamariposas ranks the stabilizing edits. First,
in Figure 4a, we show the distribution of the number of quantified formulas in
the original queries. For example, in Mariposa TO, the median count is 5, 965,
which is a large search space for possible edits. The median count is lower in
Verus QU, making it potentially more tractable to fully explore.

Now that we have sense of the search space, we evaluate how well Cazamari-
posas identifies the useful edits. In Figure 4b, we report the minimal rank of

Cazamariposas: Automated Instability Debugging 17

103 104

Quantified Formula Count Log Scale

0

10

20

30

40

50

60

70

80

90

100

C
D

F
(%

)

15,221

5,965

2,338

478

Mariposa TO

Mariposa QU

Verus TO

Verus QU

(a) Quantified Formula Count.

1 2 3 4 5 6 7 8 9 10
Minimal Rank of Stabilizing Singleton

0

20

40

60

80

100

C
D

F
(%

)

36.0%

3.2%

Mariposa TO

Mariposa QU

Verus TO

Verus QU

(b) Rank of Stabilizing Edits.
Fig. 4: Finding Repairs Among Large Number of Quantified Formulas.

the stabilizing singleton edits. Specifically in singletons, given a query, Caza-
mariposas produces a ranked list of 10 edits, and we report the rank of the first
stabilizing edit within this list. We note the endpoints of the CDFs on the y-axis.
It is the probability that Cazamariposas finds a stabilizing edit within the first
10 singleton edits, which corresponds to Figure 3. We note the start points of
the CDFs on the y-axis. This is the probability that the first edit Cazamariposas
tries would directly work. For a Mariposa TO query, Cazamariposas has a 36%
chance of finding a stabilizing edit with one shot.

6 Conclusions

Proof instability is a major impediment to industrial use of automated program
verification tools. Hence, we propose a new approach that targets specific in-
stances of instability. Using a novel differential analysis, we automatically classify
the type of instability a query is experiencing, rank the problematic quantifiers
in the query, and then efficiently identify targeted query edits that stabilize the
query. We implement this approach in Cazamariposas and evaluate it on SMT
queries from numerous verification projects written in three automated verifica-
tion languages. Cazamariposas successfully repairs 70% of the unstable queries.

Acknowledgments

We thank Jay Bosamiya and the anonymous reviewers for their valuable feedback
on the paper. We thank Jonáš Fiala for his help with using and modifying
SmtScope.

This work was supported in part by the National Science Foundation (NSF)
under grant 2224279, funding from AFRL and DARPA under Agreement
FA8750-24-9-1000, and the Future Enterprise Security initiative at Carnegie
Mellon CyLab (FutureEnterprise@CyLab).

18 Y. Zhou et al.

Disclosure of Interests: The authors have no competing interests to declare that are
relevant to the content of this article.

References

1. Amrollahi, D., Preiner, M., Niemetz, A., Reynolds, A., Charikar, M., Tinelli, C.,
Barrett, C.: Using normalization to improve SMT solver stability (2024), https:
//arxiv.org/abs/2410.22419

2. Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow, K., Rungta, N.,
Tkachuk, O., Varming, C.: Semantic-based automated reasoning for AWS access
policies using SMT. In: Formal Methods in Computer Aided Design (FMCAD)
(2018). https://doi.org/10.23919/FMCAD.2018.8602994

3. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., et al.: cvc5: A Versatile
and Industrial-Strength SMT Solver. In: Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS) (2022). https://doi.org/10.1007/
978-3-030-99524-9_24

4. Becker, N., Müller, P., Summers, A.J.: The axiom profiler: Understanding and
debugging SMT quantifier instantiations. In: Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS) (2019)

5. Blanchette, J.C., Kühlwein, D., Geschke, S., Loewe, B., Schlicht, P.: A survey
of axiom selection as a machine learning problem. In: Infinity, Computability, and
Metamathematics: Festschrift Celebrating the 60th Birthdays of Peter Koepke and
Philip Welch. Tributes, College Publications (2014)

6. Böhme, S.: Proof reconstruction for Z3 in Isabelle/HOL. In: International Work-
shop on Satisfiability Modulo Theories (2009)

7. Bordis, T., Leino, K.R.M.: Free facts: An alternative to inefficient axioms in Dafny.
In: Formal Methods: 26th International Symposium (FM) (2024). https://doi.org/
10.1007/978-3-031-71162-6_8

8. Cazamariposas. https://github.com/secure-foundations/mariposa, accessed Feb.
2025

9. Chakarov, A., Geldenhuys, J., Heck, M., Hicks, M., Huang, S., Jaloyan, G.A.,
Joshi, A., Leino, R., Mayer, M., McLaughlin, S., Mritunjai, A., Claudel, C.P.,
Porncharoenwase, S., Rabe, F., Rapoport, M., Reger, G., Roux, C., Rungta, N.,
Salkeld, R., Schlaipfer, M., Schoepe, D., Schwartzentruber, J., Tasiran, S., Tomb,
A., Torlak, E., Tristan, J., Wagner, L., Whalen, M., Willems, R., Xiang, J., Byun,
T.J., Cohen, J., Wang, R., Jang, J., Rath, J., Syeda, H.T., Wagner, D., Yuan,
Y.: Formally verified cloud-scale authorization. In: International Conference on
Software Engineering (ICSE) (2025), https://www.amazon.science/publications/
formally-verified-cloud-scale-authorization

10. Cutler, J.W., Disselkoen, C., Eline, A., He, S., Headley, K., Hicks, M., Hietala, K.,
Ioannidis, E., Kastner, J., Mamat, A., McAdams, D., McCutchen, M., Rungta,
N., Torlak, E., Wells, A.M.: Cedar: A new language for expressive, fast, safe,
and analyzable authorization. In: Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA) (Apr
2024). https://doi.org/10.1145/3649835

11. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems (TACAS) (2008). https://doi.org/
10.1007/978-3-540-78800-3_24

https://arxiv.org/abs/2410.22419
https://arxiv.org/abs/2410.22419
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-031-71162-6_8
https://doi.org/10.1007/978-3-031-71162-6_8
https://doi.org/10.1007/978-3-031-71162-6_8
https://doi.org/10.1007/978-3-031-71162-6_8
https://github.com/secure-foundations/mariposa
https://www.amazon.science/publications/formally-verified-cloud-scale-authorization
https://www.amazon.science/publications/formally-verified-cloud-scale-authorization
https://doi.org/10.1145/3649835
https://doi.org/10.1145/3649835
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

Cazamariposas: Automated Instability Debugging 19

12. Dodds, M.: Formally Verifying Industry Cryptography. IEEE Security and Privacy
Magazine (2022). https://doi.org/10.1109/MSEC.2022.3153035

13. Ferraiuolo, A., Baumann, A., Hawblitzel, C., Parno, B.: Komodo: Using Ver-
ification to Disentangle Secure-Enclave Hardware from Software. In: Proceed-
ings of the ACM Symposium on Operating Systems Principles (SOSP) (2017).
https://doi.org/10.1145/3132747.3132782

14. Fiala, J.: SmtScope (2025), https://github.com/viperproject/smt-scope, accessed
Feb. 2025

15. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: IronFleet: Proving practical distributed systems correct. In: Pro-
ceedings of the ACM Symposium on Operating Systems Principles (SOSP) (2015)

16. Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D., Zill,
B.: Ironclad Apps: End-to-end security via automated full-system verification. In:
Proceedings of the USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI) (October 2014)

17. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: International
Conference on Automated Deduction. pp. 299–314. Springer (2011)

18. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Computer
Aided Verification (CAV) (2013)

19. Lattuada, A., Hance, T., Bosamiya, J., Brun, M., Cho, C., LeBlanc, H., Srinivasan,
P., Achermann, R., Chajed, T., Hawblitzel, C., Howell, J., Lorch, J., Padon, O.,
Parno, B.: Verus: A practical foundation for systems verification. In: Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP) (November 2024)

20. Lattuada, A., Hance, T., Cho, C., Brun, M., Subasinghe, I., Zhou, Y., Howell,
J., Parno, B., Hawblitzel, C.: Verus: Verifying Rust programs using linear ghost
types. In: Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA) (December 2023)

21. Leino, K.R.M., Pit-Claudel, C.: Trigger selection strategies to stabilize program
verifiers. In: Chaudhuri, S., Farzan, A. (eds.) Proceedings of the International Con-
ference on Computer Aided Verification (CAV) (2016)

22. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) (2010)

23. Moskal, M.: Programming with triggers. In: Proceedings of the Workshop on Sat-
isfiability Modulo Theories (2009)

24. de Moura, L., Bjørner, N.: Efficient e-matching for SMT solvers. In: Conference on
Automated Deduction (CADE) (2007)

25. Profiling Z3 and solving proof performance issues. https:
//fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#
profiling-z3-and-solving-proof-performance-issues

26. Protzenko, J., Parno, B., Fromherz, A., Hawblitzel, C., Polubelova, M., Bharga-
van, K., Beurdouche, B., Choi, J., Delignat-Lavaud, A., Fournet, C., Kulatova, N.,
Ramananandro, T., Rastogi, A., Swamy, N., Wintersteiger, C., Zanella-Beguelin,
S.: EverCrypt: A Fast, Verified, Cross-Platform Cryptographic Provider. In: Pro-
ceedings of the IEEE Symposium on Security and Privacy (May 2020)

27. Reitz, A., Fromherz, A., Protzenko, J.: StarMalloc: Verifying a modern, hardened
memory allocator. Proc. ACM Program. Lang. (Oct 2024). https://doi.org/10.
1145/3689773

28. Rungta, N.: A billion SMT queries a day (invited paper). In: Shoham, S., Vizel, Y.
(eds.) Proceedings of the International Conference on Computer Aided Verification
(CAV) (2022)

https://doi.org/10.1109/MSEC.2022.3153035
https://doi.org/10.1109/MSEC.2022.3153035
https://doi.org/10.1145/3132747.3132782
https://doi.org/10.1145/3132747.3132782
https://github.com/viperproject/smt-scope
https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#profiling-z3-and-solving-proof-performance-issues
https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#profiling-z3-and-solving-proof-performance-issues
https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#profiling-z3-and-solving-proof-performance-issues
https://doi.org/10.1145/3689773
https://doi.org/10.1145/3689773
https://doi.org/10.1145/3689773
https://doi.org/10.1145/3689773

20 Y. Zhou et al.

29. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) Proc. of the 27th CADE, Natal, Brasil. pp. 495–507. No. 11716 in LNAI,
Springer (2019)

30. Swamy, N., Hriţcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P.Y., Kohlweiss, M., Zinzindohoue, J.K.,
Zanella-Béguelin, S.: Dependent Types and Multi-Monadic Effects in F*. In: Pro-
ceedings of the ACM Symposium on Principles of Programming Languages (POPL)
(2016)

31. Tomb, A., Tristan, J.B.: Avoiding verification brittleness in Dafny.
https://dafny.org/blog/2023/12/01/avoiding-verification-brittleness/ (2023)

32. Verification debugging when verification fails. https://dafny.org/dafny/DafnyRef/
DafnyRef#sec-brittle-verification

33. Zhou, Y., Bosamiya, J., Li, J., Heule, M., Parno, B.: Context pruning for more
robust SMT-based program verification. In: Proceedings of the Formal Methods in
Computer-Aided Design (FMCAD) Conference (October 2024)

34. Zhou, Y., Bosamiya, J., Takashima, Y., Li, J., Heule, M., Parno, B.: Mariposa:
Measuring SMT instability in automated program verification. In: Proceedings of
the Formal Methods in Computer-Aided Design (FMCAD) (October 2023)

35. Zhou, Y., Shah, A., , Lin, Z., Heule, M., Parno, B.: Cazamariposas: Automated In-
stability Debugging in SMT-based Program Verification (Technical Report). Tech.
rep., Carnegie Mellon University (June 2025), doi.org/10.1184/R1/29207189

https://dafny.org/dafny/DafnyRef/DafnyRef#sec-brittle-verification
https://dafny.org/dafny/DafnyRef/DafnyRef#sec-brittle-verification
doi.org/10.1184/R1/29207189

	Cazamariposas: Automated Instability Debugging in SMT-based Program Verification

