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Axioms and inference rules form the foundation of deductive systems and are crucial in the study of reasoning

with logics over structures. Historically, axiomatizations have been discovered manually with much expertise

and effort. In this paper we show the feasibility of using synthesis techniques to discover axiomatizations for

different classes of structures, and in some contexts, automatically prove their completeness. For evaluation,

we apply our technique to find axioms for (1) classes of frames in modal logic characterized in first-order logic

and (2) the class of language models with regular operations.
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1 INTRODUCTION
Several applications in programming languages, formal verification, and associated fields benefit

from deductive reasoning in logics. Depending on the application domain, we need to reason with

particular logics over particular classes of structures
1
. The logics are often specialized, and the

classes of structures are those relevant to the problem domain, which may be known intuitively or

defined precisely. Examples abound including modal logics to reason about transition systems (or

Kripke structures) [Blackburn et al. 2007], temporal logics to reason about sequential or branching

behavior of systems [Clarke and Emerson 1982; Pnueli 1977], logics to reason with algebraic data

types in functional programming languages [Hodges 1997], logics to reason with Kleene algebras

that can model packet movement in networks [Anderson et al. 2014], and separation logic to reason

with pointer-based data structures in imperative programs [O’Hearn et al. 2001].

The foundations of deductive reasoning for a logic L over a particular class of structures C
lies in the axiomatic method, which utilizes general deductive mechanisms for deriving logical

∗
Equal contribution

1
Also known as models. We use structure and model interchangeably in this paper.
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truths in L applied to a set of axioms 𝐴C that captures fundamental properties of C. Whether

reasoning over one particular intended structure (e.g., arithmetic or an algebraic data type) or an

intended class of structures (e.g., lists or other data structures in a heap, mathematical groups, or

Kleene algebras), the axiomatic method involves finding a basic set of properties that logically

characterize the structures. Other properties of the structures are then logically entailed by the

basic set of axioms, and entailment can be mechanized using a variety of reasoning methods for

the logic, including proof systems and algorithmic procedures.

In special circumstances, all properties common to structures in C are logically entailed by a

finite or recursive set of axioms, in which case the axiom system is said to be complete. A complete

set of axioms coupled with a powerful enough deductive system then yields a complete proof

system for the class of structures C.
In recent years there has been tremendous progress in two fields that are relevant to this paper—

(1) automated validity checking for different logics and (2) program synthesis. Significant strides

have been made in identifying (semi-)decidable logical theories and in building automatic and

efficient procedures for validity[De Moura and Bjørner 2008; Kovács and Voronkov 2013]. There has

also been significant progress in program and expression synthesis, where the goal is to synthesize

a program or logical expression that satisfies a given set of constraints (e.g., see [Alur et al. 2013]).

Formulating axiomatizations is a difficult task typically done by humans, and most typically

by researchers with considerable prowess in logic. Armed with current automated reasoning and

program synthesis techniques, we ask in this paper the following (perhaps audacious) question:

Can computers help us find axiomatizations?

Intuitively, both logical reasoning and expression synthesis are useful for finding axiomatizations—

axioms are logical expressions that we want to synthesize, and reasoning is needed to prove that

an axiom is valid over a class of structures, as well as for other tasks, e.g., checking if an axiom is

implied by another set of axioms.

In this paper, we formulate the problem of axiomatizing a class of structures in a logic. This is a

model-theoretic formulation of axiomatization that is independent of proof systems. Given a logic

L and a subclass C of structures within a larger class S, an axiomatization we aim to find is a finite

set𝐴 of sentences in L that (a) hold on all structures in C, (b) are nontrivial in that they do not hold

over all structures in S, and (c) are mutually independent in terms of semantic entailment with

respect to S. Such an axiomatization 𝐴 is said to be complete if it semantically entails all sentences

expressible in L that hold over C. That is, for any sentence 𝜑 ∈ L that is true for every structure

in C, we have that every structure in S satisfying the axioms 𝐴 also satisfies 𝜑 , i.e. 𝐴 |= 𝜑 .

1.1 Learning-based Axiom Synthesis (LAS) Framework
The fundamental contribution of this paper is a framework and core algorithm for solving the axiom

synthesis problem, consisting of logical reasoning and expression synthesis components.We propose

the Learning-based Axiom Synthesis (LAS) framework to facilitate synthesis of sound/complete

axiomatizations. For a particular logic L and a subclass C of a class of structures S, this framework

calls for implementing and combining the following components:

• VC: a procedure that checks the validity of formulae in L over the class C
• Cex: a procedure that generates a counterexample to rule out a formula that is invalid over C
• VS: a procedure that checks entailment of formulae in L over the class S
• Learner: a procedure that proposes axioms in L using counterexamples reported by Cex
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Given C and the logic L, whose semantics over S is known, the LAS framework can be instanti-

ated to axiomatize C by implementing the procedures VC, Cex, VS, and Learner. The framework

specifies a core algorithm that combines these procedures to find a sound axiomatization for C.
Note that, because individual structures may have infinite domains and the class C may be

infinite as well, it does not make sense to think of C as an input. Instead, the framework requires

reasoning and counterexample generation procedures to be implemented for C and S. The notion
of counterexamples is rather nuanced. If structures in C are finite (even though the set C is not), we

may expect Cex to directly provide structures as counterexamples for the soundness of proposed

axioms.When structures are infinite, however, Cex may generate what we call pseudo-models, which
are finite objects that rule out unsound formulae and indicate the existence of a counterexample

structure (which may be infinite). The notion of pseudo-models depends on the specific setting,

and we elaborate on this later.

Each procedure required by the framework serves a specific purpose for axiom synthesis. First,

when Learner proposes a candidate axiom in L, we can determine whether it is sound, i.e. valid
over C, by using the procedure VC. Second, having synthesized a set of sound axioms 𝐴, we can
check for redundancies, i.e. whether any axioms in 𝐴 are logically entailed by the others, by using

the procedure VS. Third, Learner is a generic expression synthesis procedure that is aware of the

universal class of structures S and the semantics of the logic L over S, but it is agnostic to the

class C. To efficiently search for axioms, it hence needs counterexamples from C. Finally, each time

Learner proposes a candidate that is unsound, the procedure Cex generates a pseudo-model that

witnesses that the axiom is false, and Learner uses it to prune the search space for new axioms.

Since we would like to deal with expressive logics and classes of structures, we cannot avoid that

the procedures may be incomplete and non-terminating in various ways. In particular, in many

cases the validity procedures VC and VS will be non-terminating, though of course they must be

sound: if they terminate with an answer then that answer is correct.

The LAS framework can be seen as a kind of counterexample-guided inductive synthesis (CEGIS)

framework for synthesizing axiom systems [Solar Lezama 2008]. In typical synthesis problems the

specification for synthesized expressions is formalized as a logical constraint. However, in axiom

synthesis, axioms are a sound and independent set of statements for a class C, and it is not possible
to capture this requirement as a logical constraint (e.g., as in SyGuS [Alur et al. 2013]). However, by

implementing the teacher using the components VC, Cex, and VS, LAS facilitates a CEGIS algorithm
using a learner that inductively learns expressions from counterexamples. The LAS framework and

the notion of pseudo-models to learn classes with infinite models are contributions of this paper.

1.2 Complete Axiomatizations
The framework suggested above does not address the problem of finding complete axiomatizations.

First, we need to define precisely what we mean by completeness, and there are multiple natural

notions here. We could say that a set of sound axioms𝐴 is complete if the subclass of S that satisfies

𝐴 is precisely C. This is equivalent to requiring that every structure in S that is not in C violates at

least one axiom in 𝐴.
However, there is another natural and common notion: 𝐴 is complete if every property 𝜑

(expressible in L) that holds over C is semantically entailed by 𝐴. Note the difference: this does not
demand that C is captured precisely, but rather that it is captured up to properties expressible in
L. In other words, if we take all structures in S that satisfy the axioms 𝐴, we should get the class

C′ ⊇ C of all structures that satisfy every property that holds over C. If C′ = C then the above two

notions coincide. (For readers familiar with the notion of elementary class [Hodges 1997]: this is the
same notion except that instead of first-order properties it involves properties expressible in L.)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 185. Publication date: October 2022.



185:4 Paul Krogmeier, Zhengyao Lin, Adithya Murali, and P. Madhusudan

The LAS framework involves an optional completeness checker CC. Given axioms 𝐴, the proce-
dure CC checks whether there is a structure𝑀 that satisfies 𝐴 but does not satisfy all properties

common to C. Completeness checks are extremely hard to automate, in part because C′ may be

a complex class that is hard to understand. However, when C′ = C, then CC need only check

whether there is a structure in S \ C that satisfies the axioms, which is feasible in some cases.

1.3 Instantiations of LAS
The second contribution of this paper is an instantiation of LAS in two different settings:

• Modal Logics [Blackburn et al. 2006; Van Benthem 1984]. The subfield of modal logic called

correspondence theory characterizes classes of Kripke structures (transition systems with

propositional valuations for each state) using axioms in modal logic. We instantiate LAS in

this setting to synthesize axioms for 17 different classes of structures from the literature.

• Languages with Kleene star [Conway 1971; Kozen 1994; Salomaa 1966]. We instantiate

LAS to synthesize equational axioms for a class of structures consisting of arbitrary word

languages over finite alphabets with the operations of concatenation, union, and Kleene star.

While the framework remains the same, both of the settings above have nuances. Modal logic

axiomatizations for classes of Kripke structures is a natural example for our framework, especially

since there are a large number of classes to study systematically. It presents unique challenges,

however— axioms in modal logic have semantics that involves universal quantification over the

propositional valuations, which requires us to handle second-order reasoning. Completeness check-

ing is also highly nontrivial, but we are able to synthesize complete axiomatizations for all 17 classes

(and with 14 of them automatically proven complete). Axiomatizing word languages with operations

poses a different set of challenges— though our instantiation of LAS manages to effectively discover

and reason with equational axioms, it is known that any complete finite axiomatization must go

beyond equations [Redko 1964], e.g., to conditional equations, which substantially increases the

complexity of reasoning procedures. In fact, the equational axioms that our tool finds are stronger

than the purely equational axioms in standard axiomatizations for Kleene algebras.

Despite the nuances and complexity described above, the tool we develop for these instantiations

effectively discovers sound (and in some cases complete) axiomatizations in reasonable time, and

furthermore, the axioms resemble those found by human researchers, after accounting for simple,

semantically-equivalent rearrangements. We believe that the relative success of our framework in

two different settings shows its promise for automating axiomatizations. As logical reasoning and

expression synthesis technologies improve, the framework, being parameterized over these, will

also become more effective.

In summary, the contributions of this paper are: (a) a model-theoretic formulation of the axiom

synthesis problem, (b) the Learning-based Axiom Synthesis framework that facilitates a CEGIS-style

algorithm for automating axiom synthesis, (c) the notion of pseudo-models which can be used as

counterexamples for axiom synthesis, and (d) instantiations of the LAS framework in two domains

that argue its efficacy, modal logic (17 classes of structures) and equational axioms for Kleene

algebras.

The paper is structured as follows. In Section 2, we show how LAS works for an illustrative

example, namely, axiomatizing equivalence relations from structures that encode partitions. Section 3

presents our model-theoretic formulation of the axiom synthesis problem, with discussions on

sound and complete axiomatizations. We present the LAS framework in Section 4 and define the

components needed for reasoning, counterexample generation, and synthesis. In Sections 5 and 6, we

present instantiations of the LAS framework for the settings of modal logic (correspondence theory)

and languages with regular operations. The nuances in each setting, realizations of components,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 185. Publication date: October 2022.



Synthesizing Axiomatizations using Logic Learning 185:5

implementation details, evaluation, and the axiomatizations found by our tool are reported in the

corresponding sections. Section 7 presents related work and we conclude with future directions in

Section 8.

2 EXAMPLE: AXIOMATIZING EQUIVALENCE RELATIONS
We begin by illustrating LAS in a very simple setting. We want to synthesize the axioms of

the relations that characterize equi-membership in partitions of sets (which we familiarly call

equivalence relations, with axioms for reflexivity, symmetry, and transitivity). This example covers

many aspects of our framework (except completeness). It illustrates how the axiomatization problem

is defined, how to build the components for reasoning, and also the axiomatization produced by

our tool.

The equi-membership relation for a partition of a set is a binary relation that relates two elements

precisely when they occupy the same partition cell. Let us model a partition 𝑃 of a set𝑋 by a function

𝑓 : 𝑋 → 𝑋 , where for each element 𝑐 ∈ 𝑓 (𝑋 ) ⊆ 𝑋 we have one cell 𝑃𝑐 ≔ {𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 𝑐}.
In other words, two elements belong to the same set in a partition if and only if 𝑓 maps them to

the same elements. Intuitively, our goal is to find a (preferably small) set of axioms expressed as

first-order logic sentences that captures the theory of relations 𝑅 defined using such partitions.

More precisely, we want an axiomatization that uses sentences referring only to 𝑅 (and not to “𝑓 ”
or “ = ”) which are true in every structure that satisfies:

𝜓 ≔ ∀𝑥 .∀𝑦. (𝑅(𝑥,𝑦) ↔ 𝑓 (𝑥) = 𝑓 (𝑦)) . (1)

The target class C hence consists of structures that satisfy (1), each being a set of elements together

with interpretations for 𝑓 , =, and 𝑅, with = possessing the usual meaning. Each structure in C
therefore interprets 𝑅 as the equi-membership relation defined by the partition that puts two

elements 𝑥 and 𝑦 in the same cell if 𝑓 (𝑥) = 𝑓 (𝑦).
Suppose we have an axiom synthesizer that proposes candidate axioms. Leaving aside how to

obtain the synthesizer, we must at least be able to determine whether a candidate axiom is truly an

axiom, i.e., whether it is true in each structure in C. In this example, the target class is characterized

in first-order logic by (1). Checking that a candidate formula 𝜑 is in fact a true axiom requires

checking that every structure𝑀 ∈ C makes 𝜑 true, which corresponds to the validity of

𝜓 → 𝜑. (2)

Validity in the class C, which is equivalent to the first-order validity of (2) for this example,

corresponds to what we call soundness and is checked in our framework by a component we call VC.

We refer to formulae that are true for all structures in C as sound axioms. As an example, suppose

the synthesizer proposes the candidate

𝜑 ≔ ∀𝑥 .∀𝑦. 𝑅(𝑥,𝑦).

This is not a sound axiom, because any partition with at least two cells satisfies (1) but not 𝜑 ,
and therefore does not satisfy (2). In this setting, we can implement VC using any semi-decision

procedure for first-order logic validity. Note, however, that we cannot hope to mechanically prove

that a candidate axiom is not sound. We must be content with admitting axioms that we can prove

sound and discarding those that we cannot prove.

Can we do better than merely filtering candidate axioms for soundness? A key idea in synthesis is

the use of counterexamples to guide search. If we can find counterexamples that witness unsoundness,
then we can use them to rule out many other unsound candidates. For any unsound 𝜑 like the one

above, there must be a structure𝑀 ∈ C such that𝑀 ̸ |= 𝜑 (though it may be difficult or impossible

to automatically find one, and it may not be finitely representable). If we can indeed effectively find

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 185. Publication date: October 2022.



185:6 Paul Krogmeier, Zhengyao Lin, Adithya Murali, and P. Madhusudan

𝑀 ≔

·

·

·

·
𝑓

𝑓

𝑓

𝑓
∀𝑥𝑦. 𝑅(𝑥,𝑦),

Rules out: ∀𝑥𝑦𝑧. (𝑅(𝑥,𝑦) ∨ 𝑅(𝑦, 𝑧) ∨ 𝑅(𝑥, 𝑧)),
∃𝑥 .∀𝑦. 𝑅(𝑥,𝑦), ...

Fig. 1. A counterexample structure 𝑀 that encodes a partition with 4 singleton cells. It witnesses unsoundness
of the candidate axiom ∀𝑥 .∀𝑦. 𝑅(𝑥,𝑦) and many others.

counterexamples, then we can maintain a set of counterexample structures in a counterexample-

guided synthesis loop. In each iteration, we can query the synthesizer for candidate axioms that are

true in all counterexample structures found up to that point. Candidate axioms are then subjected to

a soundness check, and if proven, added to a growing set of axioms. Continuing with our example

above, suppose we begin with an empty set of counterexample structures and the first candidate

axiom is 𝜑 ≔ ∀𝑥 .∀𝑦. 𝑅(𝑥,𝑦). After failing to prove it sound, we may generate a counterexample

structure𝑀 with, say, four solitary elements in their own partition cells, as shown in Figure 1. In

the following iterations, all candidate axioms proposed by the synthesizer are required to be true in

𝑀 . Notice that this is a favorable counterexample because it rules out several unsound candidates

beyond 𝜑 . For instance, the unsound axiom

∀𝑥 .∀𝑦.∀𝑧. (𝑅(𝑥,𝑦) ∨ 𝑅(𝑦, 𝑧) ∨ 𝑅(𝑥, 𝑧))
is eliminated by𝑀 , but would not have been eliminated by a partition consisting of two elements

in their own cells.

Building a counterexample synthesizer, which we call Cex, is a hard problem. In general, there is

no procedure that delivers a counterexample even when one exists. However, since counterexamples

guide search but are not crucial for progress, we resort to heuristics to find them. For example, we

can query a constraint solver to find structures of small, bounded size (or finitary witnesses for

infinite ones, which we call pseudo-models) that witness the unsoundness of candidate axioms.

Beyond soundness and efficiency, we also want axioms to be independent of each other. In other

words, no single axiom should be logically implied by the other axioms. For example, suppose we

have discovered the axiom for transitivity,

∀𝑥 .∀𝑦.∀𝑧.(𝑅(𝑥,𝑦) ∧ 𝑅(𝑦, 𝑧) → 𝑅(𝑥, 𝑧)),
and the synthesizer proposes a similar axiom

∀𝑤.∀𝑥 .∀𝑦.∀𝑧.(𝑅(𝑤, 𝑥) ∧ 𝑅(𝑥,𝑦) ∧ 𝑅(𝑦, 𝑧) → 𝑅(𝑤, 𝑧)) .
Both axioms are sound, but we would like to discard the latter because it is logically implied by the

former. The problem of checking independence, i.e., whether a set of axioms {𝜓1, . . . ,𝜓𝑛} implies a

candidate axiom 𝜑 , can be solved in this setting by checking the validity of∧
𝑖

𝜓𝑖 → 𝜑. (3)

We can build an independence checker using VS, which is a validity procedure for arbitrary

structures and signatures, and in this case, it can be realized using a semi-decision procedure for

first-order validity. If we are able to prove (3), then we discard 𝜑 . Otherwise, we add it to the

growing set of axioms.

Despite our (unavoidable) reliance on semi-decision procedures and heuristics, our tool is able to

find axiomatizations effectively. Given the description of the target class (1), our tool finds axioms

for reflexivity, symmetry, and transitivity (with slightly different forms than usual):
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∀𝑥 . 𝑅(𝑥, 𝑥)
∀𝑥 .∀𝑦. (𝑅(𝑥,𝑦) ↔ 𝑅(𝑦, 𝑥))
∀𝑥 .∀𝑦.∀𝑧. (𝑅(𝑥,𝑦) → (𝑅(𝑥, 𝑧) → 𝑅(𝑦, 𝑧))).

The reader may be wondering: at what point does the synthesis loop stop? When is an axiomati-

zation complete, or good enough? What does good enough mean? These are interesting and tricky

questions (as discussed in Section 1), and answers depend heavily on the specific problem, which

makes automation very hard.

In the case of relations defined by a partition, proving completeness of a set of axioms 𝐴 turns

out to be subtle. Intuitively, we want to know whether for any structure that satisfies 𝐴 there is a

function 𝑓 such that Equation (1) holds (a second-order quantification over functions). The difficulty

with proving this, intuitively, is that one needs to select a representative from each equivalence

class of 𝑅. For example, if 𝑅(𝑎, 𝑏) holds, then it should be the case that 𝑓 (𝑎) = 𝑓 (𝑏), but there are
many choices for this element. Proving the existence of a suitable function 𝑓 is difficult to automate

(in general it seems to require the axiom of choice), and we did not implement a completeness

checker for this example.

3 THE AXIOM SYNTHESIS PROBLEM
In this section, we define the axiomatization problem.We introduce some preliminaries in Section 3.1

and describe the problem in Section 3.2.

3.1 Preliminaries
In our formulation, the problem of axiom synthesis is parameterized by an abstract logic L, defined
as follows:

Definition 3.1 (Abstract Logic). An abstract logic L is a tuple (F ,S, |=) where
• F is a set of formulae.
• S is a class of models.
• |= ⊆ S × F is the binary satisfaction relation. □

Satisfaction and Entailment. We say𝑀 satisfies 𝜑 if𝑀 |= 𝜑 holds. Equivalently, we say 𝜑 holds in
𝑀 or 𝑀 is a model of 𝜑 or 𝜑 is true in 𝑀 . Let 𝑀 ∈ S be a model, C ⊆ S be a subclass of models,

𝑇 ⊆ F be a subset of formulae, and 𝜑 ∈ F be a formula. We say𝑀 satisfies 𝑇 , written𝑀 |= 𝑇 , to
mean 𝑀 |= 𝜑 for every 𝜑 ∈ 𝑇 . We lift this to a class of models C and write C |= 𝜑 (or C |= 𝑇 ) if
every model𝑀 ∈ C satisfies 𝜑 (resp. satisfies 𝑇 ). We also use |= to denote logical entailment. We

say 𝜑 is entailed by 𝑇 , written 𝑇 |= 𝜑 , to mean that every model of 𝑇 satisfies 𝜑 .

Theories and Models. A theory is a set of formulae 𝑇 ⊆ F that is entailment closed, i.e., for

every 𝜑 ∈ F , if 𝑇 |= 𝜑 , then 𝜑 ∈ 𝑇 . The theory of a class of models C, denoted by Th(C), is
the set {𝜑 ∈ F | C |= 𝜑} of formulae that hold in all models in C. The dual of this view is

the class {𝑀 ∈ S | 𝑀 |= 𝑇 } consisting of all models that satisfy a set of formulae 𝑇 , which
we denote by Mod(𝑇 ). Observe that the larger the theory, the smaller its class of models, i.e.,

if 𝑇 ⊆ 𝑇 ′ then Mod(𝑇 ′) ⊆ Mod(𝑇 ). In fact, taking the two partially-ordered sets (2F, ⊆) and
(2S, ⊇), the monotonic functions Mod : 2

F → 2
S
and Th : 2

S → 2
F
form a monotone Galois

connection [Lawvere 1969; Smith 2010], since for any set of formulae 𝑇 and class C we have

𝑇 ⊆Th(C) ⇔ Mod(𝑇 ) ⊇ C.

L-Elementary Class. One consequence of the above Galois connection is that for any C ⊆ S we

haveMod(Th(C)) ⊇ C. We distinguish a special case, namely, whenMod(Th(C)) = C. We refer to

such a class C as L-elementary. One can see from the above definitions that a class is L-elementary
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S

Mod(𝜑1)

Mod(𝜑2)

Mod(𝜑𝑛)
C

Fig. 2. Model-theoretic axiomatization.

if and only if it can be defined as Mod(𝑇 ) for some theory 𝑇 . This is inspired by the concept of an

elementary class from model theory [Hodges 1993], and it informs our definition of completeness

in Section 3.2.

3.2 A Model-Theoretic Formulation of Axiom Synthesis
The model-theoretic axiomatization problem is parameterized by an abstract logic L = (F ,S, |=).
The objective is to axiomatize a target class of models C ⊆ S using formulae in F . We use the word

axiom for any formula in F that is true in all models in C, equivalently, 𝜑 ∈Th(C)2.
We typically want a mutually-independent set of axioms, i.e., one where no single axiom follows

from the others. A set of formulae 𝑇 ⊆ F is mutually independent if 𝑇 \ {𝜑} ̸|= 𝜑 for every 𝜑 ∈ 𝑇 .

Definition 3.2 (Finite Axiomatization). Given an abstract logic L = (F ,S, |=) and target class

C ⊆ S, a finite set 𝐴 ⊆ F is said to be an axiomatization of C if C |= 𝐴. Additionally, an
axiomatization is said to be non-vacuous if 𝐴 contains no tautologies over S, and it is mutually
independent if 𝐴 is also mutually independent.

We develop algorithms for synthesizing sound, non-vacuous, and mutually-independent finite

axiomatizations in this work
3
.

In the space of models, axiomatization can be viewed as overapproximating C as a subclass of S
using independent axioms 𝐴. Consider Figure 2. We see that an axiom 𝜑 corresponds to a class of

modelsMod(𝜑) ⊇ C such that 𝜑 is satisfied everywhere in that class. As the set 𝐴 grows, the space

of models shrinks to

Mod(𝐴) =
⋂
𝜑 ∈𝐴

Mod(𝜑),

as fewer and fewer models satisfy every axiom. The dual perspective gives the theory of the axioms
Th(𝐴) = {𝜑 ∈ F | 𝐴 |= 𝜑}, which grows with 𝐴. For any axiomatization 𝐴, the theory of 𝐴 is

contained in the theory of C, i.e., Th(𝐴) ⊆Th(C).
Axiomatizations are equipped with a natural partial order on their theories.

Definition 3.3 (Precision Order on Axiomatizations). Let 𝐴 and 𝐴′ be axiomatizations of C
according to Definition 3.2. We say 𝐴 is more precise than 𝐴′ if Th(𝐴) ⊃Th(𝐴′).
2
In practice, we focus on discovering simple (e.g., short) axioms.

3
Note that mutual independence entails non-vacuity since tautologies are entailed by the empty set of axioms. However, we

state non-vacuity explicitly as it is a basic property of axiomatizations.
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We focus on finding axiomatizations that are as precise as possible, with the ideal scenario being

a complete axiomatization.
As discussed in Section 1, although it is tempting to think of a complete axiomatization as an

axiomatization 𝐴 such that Mod(𝐴) = C, it may happen that C ⊂ C∗ B Mod(Th(C)), i.e., C is not

L-elementary, and hence the models of any axiomatization of C will always be a strict superset of

C. We hence use the following notion of completeness:

Definition 3.4 (Complete Finite Axiomatization). A finite axiomatization𝐴 is said to be a complete

axiomatization for C if Th(𝐴) = Th(C).

This definition allows for completeness with respect to the expressive power of L. SinceTh(𝐴) ⊆
Th(C) for any axiomatization 𝐴, a complete axiomatization is the most precise, i.e., has the largest

possible theory among all axiomatizations of C.

Discussion on axioms for proof systems. While our formulation is model-theoretic, it is of course

useful in the context of proof systems as well. A proof system is a set of facts along with rules

that allow one to infer judgments of the form Γ ⊢ 𝜑 , which mean that 𝜑 is derivable from Γ using

the rules. Let us assume a proof system that is sound and strongly complete over all models S, or,
formally, Γ ⊢ 𝜑 ⇔ Γ |= 𝜑 . An axiomatization is then sound for the proof system as well: if 𝐴 is an

axiomatization of C per Definition 3.2 and 𝐴 ⊢ 𝜑 , then 𝜑 ∈Th(C). Observe that the completeness

criterion in this case also reduces to our definition using the completeness of the proof system.

Let 𝐴 be an axiomatization that is complete for C per Definition 3.4, i.e., 𝐴 |= 𝜑 ⇔ 𝜑 ∈ Th(C).
Using the soundness and strong completeness of the proof system, we get that𝐴 ⊢ 𝜑 ⇔ 𝜑 ∈Th(C).
Therefore 𝐴 is also complete for the theory of C with respect to the proof system. In the rest of

the paper, we do not explicitly consider axioms for proof systems; we concentrate only on the

model-theoretic formulation.

4 LEARNING-BASED AXIOM SYNTHESIS FRAMEWORK
In this section, we describe the Learning-based Axiom Synthesis (LAS) framework to synthesize

precise or complete axiomatizations. We argue that effective axiom synthesis algorithms can be built

by implementing the LAS framework for domains of interest. We describe the atomic components

of the framework in Section 4.1, the high-level algorithm which uses the components in Section 4.2,

and in Section 4.3 we formulate a constraint-based synthesizer used for our instantiations of

LAS (Sections 5 and 6).

4.1 Components of the LAS Framework
We now develop the set of independent functional components that underlie LAS. Instantiating

LAS for a given domain requires the implementation of these components for that domain. The

components are parameterized by an abstract logic L = (F ,S, |=) and a target class C ⊆ S, which
we fix throughout this section. We describe the components below.

• Soundness checker: A procedure dubbed VC (validity over C), which takes as input a

formula 𝜑 ∈ F and determines whether 𝜑 is an axiom for C, i.e. whether C |= 𝜑

Although soundness can be determined using an axiomatization in L, note that having an axioma-

tization in L is certainly not a requirement for building VC. We explore two approaches in this

paper. For the domain of modal logic, we build VC using an axiomatization in first-order logic,

the axioms of which do not indicate the modal axioms in any reasonable sense. For the domain of

languages with Kleene star, we build VC using a reference implementation of operations on regular

languages.
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• Independence checker: A procedure dubbed VS (validity over S), which takes a set of

axioms 𝐴 ⊆ F and an axiom 𝜑 ∈ F as inputs and determines whether 𝜑 is independent of 𝐴,
i.e. whether 𝐴 ̸ |= 𝜑 . Note that the entailment is over all models in S.
• Counterexample generator: A procedure dubbed Cex, which takes as input a formula

𝜑 ∈ F that is not an axiom of C and produces a pseudo-model pm as a counterexample to 𝜑 .

A natural notion of a counterexample for 𝜑 is a model𝑀 ∈ C such that𝑀 ̸ |= 𝜑 . In many domains,

however, it may be the case that most (or even all) models in C are infinite (see Section 6). Therefore,

we require for such domains the definition of finitely-representable objects called pseudo-models,
along with a witness mapW that associates to every pseudo-model a set of formulae that it rules

out. A pseudo-model pm is said to be a counterexample to 𝜑 if and only if 𝜑 ∈ W(pm). Pseudo-
models witness the existence of models in C that rule out unsound candidate axioms, and often we

can precisely describe these models with a mappingM that maps a pseudo-model pm to the set

M(pm) ⊆ C of models indicated by pm. When we have the mappingM, one natural definition

forW(pm) is the one that rules out any candidate that is false in all models fromM(pm), i.e.
W(pm) = {𝜑 ∈ F | ∀𝑀 ∈ M(pm), 𝑀 ̸ |= 𝜑}. These notions are reminiscent of those from abstract

formulations of learning which associate with any sample a set of concepts that the sample is

consistent with (e.g. [Löding et al. 2016]).

As an example, suppose we are working with a class of models that have as their domain the

set of integers. Consider an unsound candidate axiom 𝜑 B ∀𝑥 . 𝑓 (𝑥) = 𝑥 , where 𝑓 is uninterpreted.

One possible pseudo-model pmmight specify that 𝑓 (1) = 2while leaving 𝑓 unspecified everywhere
else. We can takeM(pm) to be the set of all models that have 𝑓 (1) = 2, withW stipulating that

𝜑 ∈ W(pm) because 𝜑 is already false with the partially defined 𝑓 (and extending 𝑓 cannot help).

Thus pm is a finitely-presented counterexample to 𝜑 , but it is not a model, since it does not specify

the value of 𝑓 on all integers. The notion of pseudo-models will vary by domain, and we present

the specifics where relevant.

• Completeness checker: A procedure dubbed CC, which takes as input a set of axioms 𝐴
and determines whether 𝐴 is a complete axiomatization in the sense of Definition 3.4.

As discussed earlier, building CC is difficult, especially when we have C ⊂ C∗ B Mod(Th(C)).
Therefore, we view the completeness checker as an optional component in the LAS framework,

and typically we would only consider implementing it when C∗ = C, where we can make use of

knowledge about the target class C. In general, we aim to find axiomatizations that are as precise

as possible.

• Formula Synthesizer: A procedure dubbed LearnerW , which takes as input a set PM of

pseudo-models and a set Avoid of formulae and synthesizes a formula 𝜑 ∈ F such that

𝜑 ∉W(pm) for every pm ∈ PM and 𝜑 ∉ Avoid. Note that the procedure is parameterized by

the domain-specific mapW. We describe a formulation for LearnerW using SMT solvers

in Section 4.3.

We demonstrate in the following sections that, by building the various components described

above, it is possible to realize effective axiom synthesis for different domains using a single frame-

work. Building effective components is crucial to the success of axiom synthesis in LAS; we make

contributions in this respect by implementing variants of the above components for two domains

with complex requirements.

4.2 The Core LAS Algorithm
Here we describe the core algorithm for the LAS framework, which utilizes the components

described in Section 4.1.Wemake two simplifications for presentation: (1) we assume all components

implement decision procedures and (2) we exclude completeness checking, given that it is optional
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parameters: Logic L = (S, F , |=), target class C ⊆ S, and timeout
imports: VC, VS, Cex, LearnerW over L, C
output: Axioms 𝐴 ⊆ F for C

1: procedure LAS:
2: 𝐴, PM,Avoid ← ∅
3: repeat
4: 𝜑 ← LearnerW (PM,Avoid) // Get a proposal not ruled out by counterexamples

5: sound ← VC(𝜑)
6: if sound then
7: independent ← VS(𝐴,𝜑)
8: if independent then
9: 𝐴← 𝐴 ∪ {𝜑}
10: else // Rule out 𝜑 and continue

11: Avoid ← Avoid ∪ {𝜑}
12: continue
13: else // Get counterexample and continue

14: pm← Cex(𝜑)
15: PM ← PM ∪ {pm}
16: until timeout
17: return 𝐴

Algorithm 1. Core LAS Algorithm.

and there are many possible variants for incorporating it within the algorithm. After describing

the core algorithm we discuss how it works in general without the simplifications.

The core LAS algorithm is presented in Algorithm 1. It is parameterized by a logic L and target

class C, for which we must implement the soundness checker VC, independence checker VS,
counterexample generator Cex, and the formula synthesizer LearnerW .

The algorithm maintains a set 𝐴 of discovered axioms, a set PM of pseudo-models, and a set

Avoid of formulae, all initially empty. It synthesizes axioms in a loop until a timeout is reached

(lines 3-16), at which point it returns𝐴. In a given iteration of the loop, with discovered axioms𝐴 =

{𝜓1,𝜓2, . . . ,𝜓𝑛}, it ensures𝜓𝑖 is independent of {𝜓 𝑗 | 1 ≤ 𝑗 < 𝑖}, assuming the𝜓𝑖 are enumerated

in order of discovery. Additionally, for every 𝜓 ∈ 𝐴, the algorithm ensures that 𝜓 ∉W(pm) for
every pm ∈ PM .

At the head of the loop, the algorithm queries Learner for a new candidate𝜑 which is neither ruled

out by the current counterexample pseudo-models nor a member of the setAvoid of formulae (line 4).

The algorithm checks whether 𝜑 is sound using VC (line 5). If sound, it checks for independence

from 𝐴 using VS (line 7). If 𝜑 is independent, the algorithm adds it to 𝐴 and continues to the next

iteration of the loop to find more axioms (line 9). If not independent, i.e., 𝜑 is entailed by 𝐴, the
algorithm discards 𝜑 (adding it to the Avoid set to prevent it from being proposed in the future)

and goes back to the head of the loop to get another candidate (lines 11-12). If the soundness check

fails, the algorithm queries Cex for a pseudo-model pm such that 𝜑 ∈ W(pm) and adds it to PM
before returning to the head of the loop (lines 14-15).

We now discuss some technical details about how the algorithm works in the general case

without the simplifications.

Nonterminating Procedures. In general, the components described in Section 4.1 may only be

realizable as nonterminating procedures. For example, in Section 5 we instantiate the framework
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for modal logics, where VS is implemented with a procedure for first-order logic validity, which

can only be a semi-decision procedure that halts and returns true on valid formulae but may not

terminate on invalid formulae. Therefore, we modify each component to take an additional input

fuel ∈ N that models a resource bound and ensures termination. For example, we modify VC in

this way so that for every fuel ∈ N and 𝜑 ∈ F we have that VC(𝜑, fuel) always terminates, saying

either that 𝜑 is an axiom or is not an axiom, or else Unknown. This allows us to stage the various

procedures as terminating sub-procedures which we can call iteratively with increasing fuel.
With this modification, we must also extend the algorithm to make decisions when a component

returns Unknown. If Cex returns Unknown (line 14), we can discard 𝜑 after adding it to the Avoid
set, which rules it out from future proposals, and continue searching for more axioms without

adding a counterexample. If Learner returns Unknown, we can increase its fuel or exit and return 𝐴.
If VC returns Unknown on a given axiom 𝜑 , we could add 𝜑 to the list of axioms and emit a warning

that 𝜑 may not be sound. We could also discard 𝜑 (risking that we do not find a useful, sound

axiom) or increase fuel and rerun VC on 𝜑 . Similarly, if we cannot prove independence from 𝐴 for

a given sound axiom using VS, we must choose between running again with more fuel, keeping
the potentially redundant axiom, or discarding it. Which choices are effective will vary by setting,

and we leave them up to the implementation.

Mutual Independence. Observe that the axioms 𝐴 returned by the algorithm are not necessarily

mutually independent. The algorithm only ensures that each axiom is independent from those

discovered before it. This is a practical choice, since finding a minimal mutually-independent

subset of 𝐴 that covers 𝐴 could require an exponential number of calls to VS. In many cases it may

be preferable to have a larger set of simple axioms rather than a smaller set of complex axioms.

However, if we assume that the Learner component outputs candidates in order of increasing

complexity, it may happen that a simple axiom discovered early may be entailed by a combination

of more complex axioms discovered later. One way to address this is to run the algorithm to obtain a

set of axioms 𝐴 = {𝜓1,𝜓2, . . . ,𝜓𝑛}, and then use VS to remove𝜓1 from 𝐴 if it is entailed by 𝐴 \ {𝜓1}.
We can repeat this process with𝜓2 and 𝐴 \ {𝜓1}, and continue until each remaining axiom is not

entailed by the others, using only a linear number of calls to VS.

Completeness Check. If it is possible to check completeness, then the algorithm can use complete-

ness as a termination condition. However, it may not make practical sense to check completeness

each time a new axiom is added to 𝐴 as it could be expensive. Other choices include checking

completeness at the end of synthesis or checking at regular intervals. Again, these are choices that

depend on the domain and are left up to the implementation.

4.3 Realizing the Learner using an SMT Solver
We implement a generic learner parameterized by a logic (syntax and semantics), which synthesizes

expressions that are not ruled out by any of a given set of pseudo-models. We use established

constraint solving techniques to synthesize formulae of bounded height (we assume that the logic

has a bounded number of constants). Note that the constraints encoding whether a formula is ruled

out by a pseudo-model are determined by the domain-specific mapW. We thus require that, for

any pseudo-model pm, the constraints encoding 𝜑 ∉W(pm) are expressible as a quantifier-free
first-order formula

4
. Consequently, the synthesis of bounded-depth logical expressions reduces to

quantifier-free satisfiability and can be accomplished (often) with an SMT solver. More precisely,

given a bound 𝑏 on the depth of expressions, we can use a set of Boolean variables 𝑉𝑏 to encode

4
Evaluating operators like universal quantification on a pseudo-model with a finite domain can be expressed as a quantifier-

free formula using a conjunction over the elements of the domain of the pseudo-model.
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choices for how the nodes in the parse tree of the expression are to be filled. For any fixed pseudo-

model 𝑝𝑚, we then write a formula Allowedpm (𝑉𝑏) that constrains the expression (represented

by an assignment to 𝑉𝑏 ) so that it is not ruled out by pm. We then check the satisfiability of the

formula: ∧
pm∈𝑃𝑀

Allowedpm (𝑉𝑏)

conjuncted with a constraint that rules out all the formulae in the set Avoid. If satisfiable, we can
extract the expression from the assignment to𝑉𝑏 in the satisfying model. We implement this learner

for the required logic in each setting.

5 AXIOMATIZING CLASSES OF FRAMES IN MODAL LOGIC
In this section, we instantiate the LAS framework for the setting of modal logic and the problem

of axiomatizing first-order definable classes of frames, which are first-order structures over a

single binary “accessibility” relation 𝑅. Section 5.1 provides background, Section 5.2 explains the

components of the framework and discusses nuances for this particular setting, and Section 5.3

describes details of the implementation and the axiomatizations we find.

5.1 Modal Logic and Correspondence Theory
We now briefly review the syntax and semantics of propositional modal logic over Kripke structures.

We are interested in axiomatizing properties of the accessibility relation for Kripke structures

using modal logic formulae. In particular, we aim to find axiomatizations of first-order definable

properties that are classically studied in correspondence theory. We review some background from

correspondence theory following the syntax and semantics of propositional modal logic.

5.1.1 Syntax and Semantics of Modal Logic. We consider propositional modal logic over Kripke

structures (henceforth called models) of the form𝑀 = (𝑊,𝑅,𝑉 ), consisting of a set of worlds𝑊 an

accessibility relation 𝑅 ⊆𝑊 ×𝑊 , and a valuation 𝑉 :𝑊 → P(Prop) that maps worlds to a subset

of propositions from a finite set Prop. We refer to a pair 𝐹 = (𝑊,𝑅) as a frame, and in the context

of a specific model𝑀 = (𝑊,𝑅,𝑉 ) we refer to 𝐹 as the frame of𝑀 . Frames are the basic object we

aim to axiomatize.

Formulae in the logic are given by the following grammar:

𝜑 F ⊤ | 𝑝 ∈ Prop | ¬𝜑 | 𝜑 ∨ 𝜑 ′ | 𝜑 ∧ 𝜑 ′ | □𝜑 | ♢𝜑

The formulae ♢𝜑 and □𝜑 can be read in the usual way as “it is possible that 𝜑” and “it is necessary

that 𝜑”, respectively. The semantics of modal logic defines when a formula is true at a given world

𝑤 ∈𝑊 in a model𝑀 = (𝑊,𝑅,𝑉 ):

𝑀,𝑤 |= ⊤ always

𝑀,𝑤 |= 𝑝 iff 𝑝 ∈ 𝑉 (𝑤)
𝑀,𝑤 |= ¬𝜑 iff𝑀,𝑤 ̸ |= 𝜑

𝑀,𝑤 |= 𝜑 ∨ 𝜑 ′ iff𝑀,𝑤 |= 𝜑 or𝑀,𝑤 |= 𝜑 ′

𝑀,𝑤 |= 𝜑 ∧ 𝜑 ′ iff𝑀,𝑤 |= 𝜑 and𝑀,𝑤 |= 𝜑 ′

𝑀,𝑤 |= □𝜑 iff𝑀,𝑤 ′ |= 𝜑 for every (𝑤,𝑤 ′) ∈ 𝑅
𝑀,𝑤 |= ♢𝜑 iff𝑀,𝑤 ′ |= 𝜑 for some (𝑤,𝑤 ′) ∈ 𝑅

These are standard syntax and semantics of propositional modal logic [Blackburn et al. 2006].
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5.1.2 Correspondence Theory in Modal Logic. Modal Correspondence Theory [Van Benthem 1984]

studies connections between modal logic formulae and classical first-order properties of frames.

As an example, the modal formula □𝑝 → 𝑝 corresponds to the reflexive frames, i.e., those for

which ∀𝑥 .𝑅(𝑥, 𝑥) holds when we treat a frame 𝐹 = (𝑊,𝑅) as a first-order structure. The precise
correspondence is the following:

Fact 5.1. For any frame 𝐹 = (𝑊,𝑅), the accessibility relation 𝑅 is reflexive if and only if the modal

formula □𝑝 → 𝑝 is true in𝑀 = (𝑊,𝑅,𝑉 ) for all valuations 𝑉 and worlds𝑤 .

Many correspondences of this kind are known to exist between modal formulae and the accessi-

bility relation, and they rely on the notion of frame validity, defined as follows:

Definition 5.1 (Frame Validity). A modal formula is valid in a frame 𝐹 = (𝑊,𝑅), written 𝐹 |=𝑓 𝜑 ,
if (𝑊,𝑅,𝑉 ),𝑤 |= 𝜑 for every world𝑤 ∈𝑊 and every valuation 𝑉 :𝑊 → P(Prop).

For intuition, let us work through the proof of Fact 5.1.

Proof of Fact 5.1. Soundness (⇒). Suppose 𝐹 = (𝑊,𝑅) is a reflexive frame, i.e., ∀𝑥 .𝑅(𝑥, 𝑥) is
true, and let𝑉 ,𝑤 be an arbitrary valuation and world, respectively. Suppose (𝑊,𝑅,𝑉 ),𝑤 |= □𝑝 , i.e.,
every world accessible from𝑤 has 𝑝 true under 𝑉 (if not, the implication is already true). We have

that (𝑊,𝑅,𝑉 ),𝑤 |= 𝑝 holds because 𝑅(𝑤,𝑤) holds. Note that this direction of the proof corresponds

to what VC checks in our framework.

Completeness (⇐). We prove the contrapositive. Note: the intuition behind this direction is that

we pick a𝑤 for which 𝑅(𝑤,𝑤) is false, and from the form of the axiom we pick a valuation 𝑉 that

makes the axiom false at𝑤 . (We explain how we automate some of this intuition in Section 5.2.)

Proof: suppose 𝐹 is not reflexive. That means there is some𝑤 ∈𝑊 where 𝑅(𝑤,𝑤) does not hold.
Let 𝑉 be a valuation that makes 𝑝 false at 𝑤 and true at all 𝑤 ′ for which 𝑅(𝑤,𝑤 ′) holds. Then
(𝑊,𝑅,𝑉 ),𝑤 |= □𝑝 , but (𝑊,𝑅,𝑉 ),𝑤 ̸ |= 𝑝 . □

Our goal now is to instantiate the LAS framework to find modal logic formulae that characterize

various classes of frames, as described above. Note that the axioms we aim to find in this setting can

be interpreted as axiom schemas. For instance, the formula □𝑝 → 𝑝 can soundly be interpreted as a

schema □𝛼 → 𝛼 , where 𝛼 is a placeholder for a modal formula, i.e., all instances of this schema are

valid in the class of reflexive frames, and the same can be said of the other classes we axiomatize.

We refer the reader to [Van Benthem 1984] for more about correspondence theory.

5.2 Instantiating the Framework for Modal Logic
We now instantiate the framework from Section 4 for the problem of synthesizing modal logic

axioms that characterize a target class of frames. We aim to axiomatize classes of frames that are

definable in first-order logic, i.e., classes defined by a first-order logic sentence𝜓 over the relation

symbols 𝑅,=, e.g., reflexive frames defined by𝜓 B ∀𝑥 .𝑅(𝑥, 𝑥). Because modal logic formulae can

be translated to first-order logic, the components make use of existing validity procedures for

first-order logic. We discuss this translation next.

Definition 5.2 (Translation of Modal Logic to First-Order Logic). Given a modal logic formula 𝜑 ,
we can translate 𝜑 into a first-order logic formula 𝜓 (𝑥) such that (𝑊,𝑅,𝑉 ),𝑤 |= 𝜑 if and only if

𝑀 ′ |= 𝜓 (𝑤), where𝑀 ′ extends the frame (𝑊,𝑅) (as a first-order structure) with interpretations for

unary predicates 𝑃 , one for each proposition 𝑝 ∈ Prop. Each predicate 𝑃 holds for the worlds𝑤 for

which 𝑝 ∈ 𝑉 (𝑤). The translated formula𝜓 (𝑥) B ml2fo𝑥 (𝜑) is defined inductively in the structure

of 𝜑 as shown below, with 𝑥,𝑦, etc. drawn from an infinite supply of fresh variables:
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ml2fo𝑥 (⊤) = ⊤
ml2fo𝑥 (𝑝) = 𝑃 (𝑥)
ml2fo𝑥 (¬𝜑) = ¬ml2fo𝑥 (𝜑)
ml2fo𝑥 (𝜑∨𝜑 ′) = ml2fo𝑥 (𝜑)∨ml2fo𝑥 (𝜑 ′)

ml2fo𝑥 (𝜑 ∧𝜑 ′) = ml2fo𝑥 (𝜑) ∧ml2fo𝑥 (𝜑 ′)
ml2fo𝑥 (□𝜑) = ∀𝑦.

(
𝑅(𝑥,𝑦) → ml2fo𝑦 (𝜑)

)
ml2fo𝑥 (♢𝜑) = ∃𝑦.

(
𝑅(𝑥,𝑦) ∧ml2fo𝑦 (𝜑)

)
Recall that the LAS framework involves the procedures VC, VS, and Cex, whose respective

purposes are to check soundness, check independence, and generate counterexamples for candidate

axioms. In this setting, we aim to find axioms for a subclass of frames, and thus S is the class of all

frames and C is a subclass of S, e.g., reflexive frames. The logic L is modal logic with frame validity
for the entailment relation (Definition 5.1). In this setting, we also implement a completeness checker

CC. We explain each component next and discuss some details for the Learner in Section 5.3.

Instantiating VC. We reduce the soundness condition for modal logic axioms over a class of

first-order definable frames C to the validity problem in first-order logic (more precisely, the

relational theory of equality and uninterpreted relations) by using the first-order characterization

for C. Recall the proof of soundness for Fact 5.1. Suppose we are axiomatizing the class of reflexive

frames, which are characterized by the first-order sentence ∀𝑥 .𝑅(𝑥, 𝑥). To check the proposed axiom
□𝑝 → 𝑝 is sound (true in all frames from C), we can check the validity of the first-order sentence

∀𝑥 .𝑅(𝑥, 𝑥) → (∀𝑥 .ml2fo𝑥 (□𝑝 → 𝑝)). More generally, for a class of frames defined by a first-order

sentence𝜓 , we check the soundness of a candidate modal axiom 𝜑 by checking the validity of

sound(𝜓,𝜑) B 𝜓 → ∀𝑥 .ml2fo𝑥 (𝜑).

Observe that the ml2fo translation turns propositions into uninterpreted unary relations, and thus

first-order validity of the translated formula requires the formula to be true for all interpretations

of the unary relations. This corresponds to quantifying over all valuations. We can thus implement

VC using any semi-decision procedure for validity in first-order logic (see Section 5.3 for details).

Instantiating Cex. As discussed above, we reduce soundness to the relational theory of equality

and uninterpreted relations, which is recursively enumerable but undecidable. Since satisfiability is

not recursively enumerable, it is straightforward to show there can be no complete procedure to

find counterexample models for an unsound candidate 𝜑 , i.e., a model of ¬sound(𝜓,𝜑). However,
our intuition is that finite counterexample models are enough to efficiently synthesize many modal

axiomatizations. Given a candidate 𝜑 that is not sound, the component Cex produces a frame

𝐹 = (𝑊,𝑅) ∈ C of a small, bounded size such that 𝐹 ̸ |=𝑓 𝜑 . Note that in this setting we can take

pseudo-models to simply be finite frames 𝐹 , withM(𝐹 ) = {𝐹 } and 𝜑 ∈ W(𝐹 ) ⇔ 𝐹 ̸ |=𝑓 𝜑 .
Instantiating VS. Given a set of modal axioms𝐴 = {𝜑1, . . . , 𝜑𝑛} and a candidate axiom 𝜑 , we want

to check that 𝜑 is independent of𝐴. That is, we want to check that there is a frame 𝐹 = (𝑊,𝑅) such
that 𝐹 |=𝑓 𝜑𝑖 for each 𝑖 but 𝐹 ̸ |=𝑓 𝜑 . Checking the existence of such a frame (i.e., independence)

does not reduce to first-order validity, but is captured by the second-order formula

∃(𝑊,𝑅).
∧
𝑖

∀𝑃 .∀𝑥 .ml2fo𝑥 (𝜑𝑖 ) ∧ (∃𝑃 ′.∃𝑥 .¬ml2fo𝑥 (𝜑)),

where 𝑃, 𝑃 ′ are sequences of second-order variables corresponding to the unary predicates produced
by the ml2fo translations.

We approximate independence by checking whether there is such a frame 𝐹 = (𝑊,𝑅) of some

small, bounded size. As for finding counterexamples to soundness, our intuition is that small

witnesses will exist to show the independence of modal axioms. We note that this heuristic could

cause independent axioms to be discarded if we insist on finding independence proofs and there are

only large frames witnessing independence. In principle, we can mitigate that risk by increasing

the size bound, but this proved unnecessary in experiments.
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Instantiating CC. We now describe a heuristic procedure for completeness. Let us assume a

first-order characterization𝜓 for a class of frames and a set of sound modal logic axioms 𝐴. Let us
also assume, without loss of generality, that the propositions in each axiom are disjoint, and let 𝜑
be the conjunction of the modal axioms in 𝐴.
The formula 𝜑 is complete for the class of frames described by𝜓 if for all frames 𝐹 , whenever

𝐹 |=𝑓 𝜑 (frame validity Definition 5.1) then 𝐹 |= 𝜓 (first-order validity). In other words, we need to

check the validity (over all frames) of the second-order sentence

(∀𝑃 .∀𝑤.ml2fo𝑤 (𝜑)) → 𝜓 . (4)

where once again 𝑃 is a sequence of second-order variables introduced by ml2fo𝑤 (𝜑).
Following a common pattern for completeness proofs in correspondence theory, we can try to

prove the contrapositive of Equation (4): assume the first-order characterization𝜓 does not hold on

some frame and then try to find a specific valuation and world that violate 𝜑 .
Using this intuition from manual proofs, we reduce the problem to a stronger version where we

try to find a finite set of worlds {𝑤1, . . . ,𝑤𝑛} and a valuation on them that violates 𝜑 . For worlds
outside {𝑤1, . . . ,𝑤𝑛}, we simply assume that the valuation uniformly assigns the same default

value 𝑣def . For instance, suppose we only have one atomic proposition 𝑝 . Then, instead of the

second-order sentence (4), we can check the validity of the following first-order sentence:

(∀𝑤1, . . . ,𝑤𝑛 .∀𝑣1, . . . , 𝑣𝑛, 𝑣def .∀𝑤.ml2fo′𝑤 (𝜑)) → 𝜓 (5)

where 𝑣1, . . . , 𝑣𝑛, 𝑣def range over Booleans (modeling the valuation of 𝑃 on𝑤1, . . . ,𝑤𝑛 and the default

value), and where ml2fo′𝑤 (𝜑) is ml2fo𝑤 (𝜑) where each predicate occurrence 𝑃 (𝑤) is defined as:

𝑃 (𝑤) B ite(𝑤 = 𝑤1, 𝑣1, ite(𝑤 = 𝑤2, 𝑣2, . . . ite(𝑤 = 𝑤𝑛, 𝑣𝑛, 𝑣def ) . . .)).
Notice that the validity of Formula 5 implies the validity of Formula 4. Furthermore, Formula 5

is in first-order logic (as valuations have been replaced by a finite set of Boolean variables), and we

can use automatic procedures for first-order logic to solve validity. This approximate checking for

completeness works well in practice (in fact, it works for 14/17 of the modal axiomatizations we

explore in Section 5.3).

Table 1. First-order descriptions used in Table 2.

FO Description Definition
Reflexive ∀𝑥 .𝑅(𝑥, 𝑥)
Transitive ∀𝑥,𝑦, 𝑧.(𝑅(𝑥,𝑦) ∧ 𝑅(𝑦, 𝑧)) → 𝑅(𝑥, 𝑧)
Symmetric ∀𝑥,𝑦.𝑅(𝑥,𝑦) → 𝑅(𝑦, 𝑥)
Euclidean ∀𝑥,𝑦, 𝑧.(𝑅(𝑥,𝑦) ∧ 𝑅(𝑥, 𝑧)) → (𝑅(𝑦, 𝑧) ∧ 𝑅(𝑧,𝑦))
Functional ∀𝑥,𝑦, 𝑧.(𝑅(𝑥,𝑦) ∧ 𝑅(𝑥, 𝑧)) → 𝑦 = 𝑧
Shift Reflexive ∀𝑥,𝑦.𝑅(𝑥,𝑦) → 𝑅(𝑦,𝑦)
Dense ∀𝑥,𝑦.𝑅(𝑥,𝑦) → ∃𝑧.𝑅(𝑥, 𝑧) ∧ 𝑅(𝑧,𝑦)
Serial ∀𝑥 .∃𝑦.𝑅(𝑥,𝑦)
Convergent ∀𝑥,𝑦, 𝑧.(𝑅(𝑥,𝑦) ∧ 𝑅(𝑥, 𝑧)) → ∃𝑤.𝑅(𝑦,𝑤) ∧ 𝑅(𝑧,𝑤)

5.3 Implementation and Evaluation
We implemented the procedures VC, VS, Cex, and CC as described in previous sections, reducing

the problems to SMT queries in Z3 [De Moura and Bjørner 2008]. We built an axiom synthe-

sizer (Learner) for modal logic and combined the components according to the general algorithm

in Algorithm 1. The implementation can be found in our GitHub repository [Krogmeier et al. 2022a].
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5.3.1 Implementation Details. Let𝜓 be a first-order description for a class of frames for which we

want to synthesize modal axioms, let 𝜑 be a candidate modal axiom, and let 𝐴 be a set of sound

modal axioms that have already been synthesized.

For soundness, VC generates an SMT query checking whether𝜓 ∧ ¬∀𝑃 .∀𝑤.ml2fo𝑤 (𝜑) is satisfi-
able, where 𝑃 stands for a sequence of unary relation symbols corresponding to propositions in 𝜑 .
This is equivalent to𝜓 ∧ ∃𝑃 .∃𝑤.¬ml2fo𝑤 (𝜑). As discussed in Section 5.2, the translated formula

ml2fo𝑤 (𝜑) replaces propositions with uninterpreted unary relations, and thus the quantification of

𝑃 can be removed, giving the formula𝜓 ∧ ∃𝑤.¬ml2fo𝑤 (𝜑) in the first-order theory of equality and

uninterpreted relations. If this formula is not satisfiable, then 𝜑 is sound; otherwise, we proceed to

generate a counterexample as in Algorithm 1.

Table 2. Synthesis results for modal logics. For each logic, we synthesized modal axioms from the first-order
description of the logic (see Table 1 for the formulae used). The Reference Axioms column shows canonical
axioms studied in the literature; the LN column shows the time taken by the learner LearnerW ; the CX
column shows the time taken by the counterexample generator Cex; the SN column shows the time taken
by the soundness checker VC; the CM column shows the time taken by the completeness check. Times are
given in seconds.

Logic FO Description Synthesized Reference LN CX SN CM
(See Table 1) Axioms Axioms

(M) Reflexive ¬𝛼 ∨ ♢𝛼 □𝛼 → 𝛼 9.9 0.00 0.06 0.03

(4) Transitive □𝛼 → □□𝛼 □𝛼 → □□𝛼 22.7 0.01 0.03 1.01

(B) Symmetric ♢□𝛼 → (♢𝛼 → 𝛼) 𝛼 → □♢𝛼 25.0 0.01 0.09 0.05

(5) Euclidean ♢□𝛼 → □𝛼 ♢𝛼 → □♢𝛼 29.7 0.01 0.13 timeout

(□M) Shift Reflexive □(𝛼 → ♢𝛼) □(□𝛼 → 𝛼) 27.7 0.01 0.14 0.04

(D) Serial ♢⊤ □𝛼 → ♢𝛼 26.9 0.00 0.03 0.04

(C) Convergent ♢□𝛼 → □♢𝛼 ♢□𝛼 → □♢𝛼 23.4 0.05 0.07 timeout

(CD) Functional ♢𝛼 → □𝛼 ♢𝛼 → □𝛼 46.8 0.01 0.04 0.06

(C4) Dense ♢𝛼 → ♢♢𝛼 □□𝛼 → □𝛼 24.2 0.01 0.13 0.05

(K45) (4) + (5) ♢♢𝛼 → ♢𝛼 □𝛼 → □□𝛼 27.0 0.01 0.15 0.82

¬♢𝛼 ∨ □♢𝛼 ♢𝛼 → □♢𝛼
(KB5) (B) + (5) ¬𝛼 ∨ □♢𝛼 𝛼 → □♢𝛼 17.7 0.00 0.14 43.06

□♢𝛼 ∨ □¬𝛼 ♢𝛼 → □♢𝛼
(D4) (D) + (4) □♢𝛼 → ♢𝛼 □𝛼 → ♢𝛼 55.2 0.01 0.33 0.17

♢♢𝛼 → ♢𝛼 □𝛼 → □□𝛼
(D5) (D) + (5) ♢⊤ □𝛼 → ♢𝛼 30.8 0.01 0.19 11.66

□¬𝛼 ∨ □♢𝛼 ♢𝛼 → □♢𝛼
(D45) (D) + (4) + (5) ♢⊤ □𝛼 → ♢𝛼 43.5 0.01 0.15 6.41

□♢𝛼 ∨ □¬𝛼 □𝛼 → □□𝛼
♢♢𝛼 → (□𝛼 ∨ ♢𝛼) ♢𝛼 → □♢𝛼

(DB) (D) + (B) 𝛼 → ♢♢𝛼 □𝛼 → ♢𝛼 36.2 0.01 0.18 0.05

¬𝛼 ∨ □♢𝛼 𝛼 → □♢𝛼
(M4) (M) + (4) ♢𝛼 ∨ ¬𝛼 □𝛼 → 𝛼 19.3 0.00 0.10 0.74

♢♢𝛼 → ♢𝛼 □𝛼 → □□𝛼
(M5) (M) + (5) ♢𝛼 ∨ ¬𝛼 □𝛼 → 𝛼 13.1 0.00 0.14 timeout

□□𝛼 ∨ ♢¬𝛼 ♢𝛼 → □♢𝛼
♢□𝛼 → 𝛼
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For independence, VS queries the SMT solver to find a bounded frame witnessing 𝐴 ̸ |= 𝜑 . If such
a bounded frame exists, then the axiom is independent, and we discard the proposal otherwise.

We optimize the implementation for this domain by merging the SMT query for checking

independence and the SMT query for synthesis (i.e. Learner). This is sound since we proceed with

a candidate axiom only if both queries are satisfiable. We found that not combining these queries

resulted in the synthesis of a large number of candidates that were immediately ruled out by the

independence checker. This essentially makes the algorithm enumerate all semantically equivalent

variants of a formula and it resulted in performance similar to naive enumeration (which we show

is less efficient in Section 5.3.3). The use of a single query also results in only a small number of

non-independent axioms being proposed, as we show in our evaluation (see Figure 3).

For counterexamples, Cex also queries the SMT solver to find a bounded frame satisfying𝜓 but

not 𝜑 . In our evaluation, we use a size bound of 4. Note that since the counterexample frames

are bounded, VS and Cex are guaranteed to terminate. However, VC tries to decide a first-order

sentence using a semi-decision procedure so it may not terminate. The fuel parameter determines

the timeout (Section 4.2) in this case.

5.3.2 Evaluation Results. We attempted 17 historically-studied classes of modal logic frames, and

we were able to synthesize complete axiomatizations for all of them. Our completeness procedure

in Section 5.2 verifies automatically that the axiomatization is complete with respect to the FO

description for 14 classes. We manually verified the completeness for the other 3 classes.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (seconds)

(M5)
(M4)
(DB)

(D45)
(D5)
(D4)

(KB5)
(K45)
(C4)
(CD)

(C)
(D)

(�M)
(5)
(B)
(4)

(M) Unsound

Dependent

Final

Fig. 3. Distribution of candidate axioms proposed for each modal logic. The x-axis shows the time at which
each axiom was proposed, and each horizontal line shows the duration of synthesis (not including the
completeness check) cut off at 20 seconds (see Table 2 for the full duration). “Unsound” refers to axioms that
failed the soundness checker VC; “Dependent” refers to axioms that were proven sound but were entailed by
later proposals and pruned in a post-processing pass; “Final” indicates the axioms that our tool outputs given
in Table 2.
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We used a laptop with a 4-core (8-thread) Intel CPU i7-8550U and 16 GB of memory. Table 2

shows the results of our evaluation with the synthesized axioms, reference axioms studied in the

literature, and the breakdown of time spent in each component. Figure 3 shows the distribution of

candidate axioms proposed for each modal axiomatization, including unsound proposals.

In our evaluation, we considered grammars that allowed all possible modal logic formulae with

one proposition, and the height of formulae was increased incrementally until 3. Counterexample

frames were bound to at most 4 worlds.

In all of the cases, the synthesizer effectively produces the complete axioms in less than a

minute. We believe that the main reason for this effectiveness is that we have an ideal type of

counterexample in modal logic: extremely small frames are already able to characterize a class with

a first-order description.

The axiomatizations synthesized by the tool, modulo small syntactic equivalences, correspond

closely to the reference axiomatizations we see in the literature (see Table 2). For the class of serial

frames, the tool found the axiom ♢⊤ while the reference axiom is □𝛼 → ♢𝛼 . We verified that the

tool’s simpler axiom is indeed sound and complete. There may be aesthetic reasons why humans

avoid axioms with constants such as ⊤, and there are several other frames where our tool generates

axioms with constants.

For classes that are characterized by conjunctions of multiple first-order properties, note that

our tool does not know this fact, and often synthesizes a different set of axioms than the union of

the axioms for each property, such as (M5).

The completeness procedure failed in some cases. Recall that for completeness, we need to check

the validity of the second-order sentence from Equation (4), which we handled using an incomplete

reduction to Equation (5). But this reduction is not enough for some of the cases we evaluated. For

example, to prove completeness for the convergence axiom 𝜑 = ♢□𝛼 → □♢𝛼 (corresponding to the

first-order description𝜓 = (𝑅(𝑥,𝑦) ∧ 𝑅(𝑥, 𝑧)) → ∃𝑤.𝑅(𝑦,𝑤) ∧ 𝑅(𝑧,𝑤)), one has to show that for

any non-convergent frame (satisfying ¬𝜓 ), we can find a valuation 𝑉 such that ¬𝜑 holds for some

world𝑤 . To do this, we have to first find a witness to ¬𝜓 , i.e., a world𝑤 and two worlds 𝑣1 and 𝑣2
with 𝑅(𝑤, 𝑣1) and 𝑅(𝑤, 𝑣2), such that 𝑣1 and 𝑣2 have disjoint successors in 𝑅. Then we can pick an

atomic proposition 𝛼 , and assign 𝛼 to all successors of 𝑣1 (which may be infinite), and ¬𝛼 to all

successors of 𝑣2. Then 𝜑 is not true at𝑤 because ♢□𝛼 is true, but □♢𝛼 is false. This proof requires

us to find a valuation that may vary on an infinite set of worlds (all the successors of 𝑣1 and 𝑣2) as
opposed to the finite-varying valuation in the reduction to Equation (5).

5.3.3 Comparison with Brute-force Enumeration. We evaluated a synthesis procedure that uses

brute-force enumeration without counterexamples for synthesis rather than constraint solving with

counterexamples. In terms of our core algorithm (Algorithm 1), this corresponds to implementing

VC (needed for soundness) and VS (needed for independence checking), but skipping Cex and

having the Learner component simply enumerate formulae.

In this evaluation, Learner enumerates all modal logic formulae up to height 3 (which is the

maximum height used in our previous evaluation in Section 5.3.2). For each enumerated candidate,

we perform the soundness check using VC and the independence check using VS as before.

We ran the enumerative procedure for all 17 modal axiomatizations (the enumeration is naive

and does not rule out any kind of symmetries), on a server with 32 Intel Xeon 8124M CPUs and 72

GB of memory. We used a timeout of 3 hours for each modal axiomatization setting.

In all 17 settings, brute force enumeration was unable to exhaustively search the space for axiom-

atizations, while our technique was able to exhaustively search the space within a minute. However,

one can argue that exhausting the search space is unnecessary if the synthesizer can produce a

provably complete axiomatization earlier. This would require running the completeness checker
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each time an axiom is added. Indeed, enumeration does produce provably complete axiomatizations

for 13 cases early on, and the time to reach such a complete axiomatization was less than a minute

in 5 cases and about 8-11 minutes in the other 8 cases. Note that this does not account for the

additional time spent checking completeness with each discovered axiom. However, for the 4

remaining settings where completeness cannot be checked automatically, an enumerative tool

that implements completeness checks with each discovered axiom would have to run until the

timeout of 3 hours. More importantly, the enumerative tool’s final axiomatizations (terminated

at 3 hours) were not complete for two settings ((C) and (□M)), whereas our tool found complete

axiomatizations for all settings within a minute.

This evaluation suggests that although the synthesized axioms in each setting are short, brute

force enumeration is not promising and is unlikely to scale to more complex settings, while using

counterexamples to guide search with constraint-solving is significantly faster. Moreover, early

termination is not possible when completeness checks fail, and exhaustive enumeration takes

prohibitively long in these cases.

6 AXIOMATIZING LANGUAGES WITH KLEENE STAR
In this section, we instantiate the LAS framework to find axioms for languages with Kleene star.
Each model in this case consists of a set of languages over a finite alphabet that is closed under the

usual operations from formal language theory. Section 6.1 reviews some background from language

theory, Section 6.2 discusses nuances for this setting, and Section 6.3 describes our implementation

and results.

6.1 Language Models
Languages of finite words and the operations of concatenation, union, and Kleene closure are

fundamental concepts in computer science. Much work went into the discovery of axioms for

reasoningwith these concepts (e.g. [Conway 1971; Kozen 1994; Salomaa 1966]), andwe are interested

in discovering such axioms de novo. In particular, we want to axiomatize a class of algebraic

structures over the signature 𝜏 = (·, +, ∗, 1, 0), which we refer to as the class of language models. The
symbols · and + are binary function symbols corresponding to concatenation and union, ∗ is a unary
function symbol corresponding to Kleene closure, and 1 and 0 are constants corresponding to the

singleton language containing the empty word and the empty language, respectively. The domain

of a language model over an alphabet Σ consists of languages of words over Σ, i.e., 𝐷 ⊆ P(Σ∗). We

review the standard language theory interpretations for 𝜏-symbols below.

Let 𝑥,𝑦 be languages over Σ. The operation + : 𝐷 × 𝐷 → 𝐷 is interpreted as union:

𝑥 + 𝑦 B 𝑥 ∪ 𝑦
The operation · : 𝐷 × 𝐷 → 𝐷 is interpreted as the concatenation of languages:

𝑥𝑦 = 𝑥 · 𝑦 B {𝑤1𝑤2 | 𝑤1 ∈ 𝑥,𝑤2 ∈ 𝑦}
where𝑤1𝑤2 denotes the concatenation of words defined in the usual way. The 𝑛-fold concatenation
of a language 𝑥 with itself is given by:

𝑥0 B {𝜖} 𝑥𝑛+1 B 𝑥𝑛𝑥,

where 𝜖 is the empty word. The constants 0 and 1 denote the empty language ∅ and the singleton

language {𝜖}, respectively. Finally, the operation ∗ : 𝐷 → 𝐷 forms the closure of a language under

concatenation with itself:

𝑥∗ = ∗(𝑥) B ⋃
𝑖∈N

𝑥𝑖
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For a fixed alphabet Σ, we refer to these models as Σ-language models. We write 𝑡𝑀𝑖 for the language

denoted by 𝑡 in a model𝑀 under variable assignment 𝑖 . For example, if𝑀 contains the languages

𝑎∗, {𝜖}, and ∅, then for an assignment 𝑖 with 𝑖 (𝑥) = 𝑎∗ and 𝑖 (𝑦) = {𝜖} we have (𝑥𝑦)𝑀𝑖 = 𝑎∗.
Note that language models need not consist of regular languages, and many equations hold in

some models and not others. For instance, we may have a model consisting of the context-free

language 𝐿 = {𝑎𝑛𝑏𝑛 : 𝑛 ∈ N}, as well as the languages formed by closing the domain under

concatenation, union, and Kleene closure (and also adding the languages for 0 and 1). In this model,

it happens that the equation 𝑥𝑦 = 𝑦𝑥 is true. But of course, this is not true for all language models:

for example, we can take 𝑥 to be the language {𝑎} and 𝑦 to be the language {𝑏} in any model that

contains those languages.

6.2 Instantiating the Framework for Language Models
We now describe how the main components of the framework are instantiated to find equational

first-order logic axioms for language models. Following the discussion above, we can identify the

class S to be all models over the signature 𝜏 = (·, +, ∗, 1, 0), with C consisting of all language models

over finite alphabets, as defined in Section 6.1. Note that to build the components for this setting

we make use of only basic knowledge about the target class, which we discuss next.

It so happens that the equational theory (the set of all true universally-quantified equations) of

the class of Σ-language models coincides with a distinguished language model called RegΣ, whose
domain consists of all regular languages over Σ. The problem of axiomatizing the equational theory

of RegΣ has a long history. It was first posed by Kleene [Kleene 1956], with several contributions

toward axiomatization (e.g., [Conway 1971; Redko 1964; Salomaa 1966]), and culminated in Kozen’s

finite axiomatization consisting of conditional and unconditional equations that were proven

complete for the equational theory [Kozen 1994]. Though we do not aim a priori to rediscover

precisely that axiomatization, it informs our choice to focus on finding equational axioms. Thus the

set of formulae F consists of universally-quantified equations in first-order logic over the signature

𝜏 . We invite the reader in the remainder of this section to start fresh and naively explore what is

necessary to find axioms in this setting, and in particular, how to build VC and Cex.
Instantiating VC. Our goal is to build a procedure that checks whether a candidate equational

axiom is true in the class C of language models. Suppose in particular that we want to prove that a

(universally-quantified) equation in 𝑛 variables is true for all language models (over arbitrary finite

alphabets Σ). Assume we have a formula ∀𝑥 .𝑡 (𝑥) = 𝑡 ′(𝑥), for some 𝜏-terms 𝑡, 𝑡 ′ and a sequence of

variables 𝑥 , and we want to prove that for any language model𝑀 , we have 𝑡 = 𝑡 ′ for any assignment

of variables to languages from the domain of𝑀 . Observe first that it is necessary that 𝑡 = 𝑡 ′ holds
when each variable 𝑥𝑖 is assigned the singleton language {𝑥𝑖 }, where we treat each variable as a

distinct alphabet symbol. If not, then the equation does not hold in any language model containing

these 𝑛 singleton languages {𝑥𝑖 }. Call this singleton assignment 𝑠 .
It turns out this condition is also sufficient for an equation to be true in all language models

(observed by Gischer [Gischer 1985], see also a detailed proof in [Hopcroft et al. 2006]). The

argument runs as follows. Suppose for contradiction that the equation is true under the singleton

assignment 𝑠 in some suitable model 𝑁 , but the languages denoted by 𝑡 and 𝑡 ′ are different for
another assignment 𝑖 in a (possibly different) model𝑀 . Then, without loss of generality, we can

assume there is a word𝑤 ∈ 𝑡𝑀𝑖 and𝑤 ∉ 𝑡 ′𝑀𝑖 . Since the equation holds under 𝑠 in 𝑁 , the terms 𝑡, 𝑡 ′

must generate the same words over 𝑥 when treated as regular expressions over the alphabet 𝑥 .
It follows by a straightforward induction on 𝑡 that membership of a word in the language 𝑡𝑀𝑖 is
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witnessed by such a word over 𝑥 (say𝑤 is witnessed by𝑤𝑥 ). That is, the language 𝑡
𝑀
𝑖 has the form:⋃

𝑤𝑥 ∈ 𝑡𝑁𝑠
𝑖 (𝑤𝑥 ) .

Membership of the word𝑤 in 𝑡𝑀𝑖 is witnessed by𝑤 ∈ 𝑖 (𝑤𝑥 ) for some word𝑤𝑥 ∈ 𝑡𝑁𝑠 , but this is a

contradiction because 𝑤𝑥 ∈ 𝑡 ′𝑁𝑠 and thus 𝑤 ∈ 𝑖 (𝑤𝑥 ) ⊆ 𝑡 ′𝑀𝑖 . Thus, for equational axioms, the VC
component can simply check that 𝑡 and 𝑡 ′ are equivalent as regular expressions over 𝑥 .
The preceding observation reduces the soundness of equational axioms to the equivalence of

regular expressions. We note that Kozen’s complete axiomatization [Kozen 1994] involves two

conditional equations. Building VC for conditional equations is more difficult, as it would likely

require proofs by induction. We leave such automation to future work, but note that it does not fall

outside the scope of the framework.

Instantiating Cex. It follows from above that the counterexample generator for false equations

over language models can always provide as a counterexample a finite prefix of a canonical language

model. For example, for the false equation 𝑥𝑦 = 𝑥 , any language model over Σ = {𝑎, 𝑏} that has
the languages {𝑎}, {𝑏}, and {𝑎𝑏} witnesses that the equation is false. Of course, such a model must

also contain the languages {𝑎𝑎} = {𝑎} · {𝑎}, {𝑏𝑏} = {𝑏} · {𝑏}, and many others (it must be closed

under the operations). Intuitively, the counterexample models, though infinite, can be witnessed

finitely. As discussed in Section 4, we formalize this with the concept of pseudo-models, and in this

context language pseudo-models.

Definition 6.1 (Language pseudo-model). A language pseudo-model over an alphabet Σ is a model

over 𝜏 = (·, +, ∗, 1, 0). Its domain 𝐷 is finite and consists of Σ-languages, and each operation is a

partial function on the domain. For every 𝑥 ∈ 𝐷𝑖
, each operation 𝑓 of arity 𝑖 is either undefined or

else 𝑓 (𝑥) is the language given by the standard interpretation from language theory.

The counterexample generator Cex produces language pseudo-models as counterexamples, and

the Learner can propose any equation that is not false in the pseudo-models it has seen so far, with

satisfaction defined as follows.

Definition 6.2 (Satisfaction in a language pseudo-model). An equation 𝑡 = 𝑡 ′ is false in a language

pseudo-model𝑀 just when 𝑡𝑀𝑖 and 𝑡 ′𝑀𝑖 are both defined and 𝑡𝑀𝑖 ≠ 𝑡 ′𝑀𝑖 for some variable assignment

𝑖 . Otherwise, 𝑡 = 𝑡 ′ is true in𝑀 (or satisfied by𝑀), written as𝑀 |=𝑝 𝑡 = 𝑡 ′.

For every language pseudo-model𝑀 and equation 𝜑 , we have:

M(𝑀) = extensions(𝑀) and 𝜑 ∈ W(𝑀) ⇔ 𝑀 ̸ |=𝑝 𝜑 ⇔ ∀𝑀 ′ ∈ M(𝑀), 𝑀 ′ ̸ |= 𝜑,

where extensions(𝑀) denotes all language models that contain the domain of 𝑀 and that agree

with the operations of𝑀 wherever they are defined. As an example, if the Learner proposes the
false equation 𝑥𝑦 = 𝑥 , then Cex may produce a pseudo-model of size 3 with domain

𝐷 = {{𝑎}, {𝑏}, {𝑎𝑏}}
and an interpretation of concatenation such that {𝑎} · {𝑏} = {𝑎𝑏} and all other operations on all

other elements are undefined. Such a pseudo-model is enough to show the equation 𝑥𝑦 = 𝑥 is false

using an assignment that maps 𝑥 to {𝑎} and 𝑦 to {𝑏}. Note that this pseudo-model does not rule

out, for example, the false equation 𝑥𝑥 = 𝑥 , because 𝑥𝑥 is undefined for every 𝑥 .
Instantiating VS. Unlike for modal logic, validity in the class S can be stated directly in first-

order logic, and thus VS is instantiated as a semi-decision procedure for first-order validity. Given

axioms 𝜑1, . . . , 𝜑𝑛 , checking that a candidate axiom 𝜑 is independent from the axioms 𝜑𝑖 amounts to

checking that𝜓 B
∧

𝑖 𝜑𝑖 → 𝜑 is not valid, or equivalently, that ¬𝜓 is satisfiable. Since satisfiability

is hard to tackle directly, we instead choose to take failure to prove dependence as a proxy for
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independence. We use VS to attempt a proof of 𝜓 . If the proof fails we add the axiom 𝜑 to the

growing set of axioms, and otherwise we discard it.

Completeness. It is known that the equational theory of language models has no complete finite
axiomatization in terms of only equations [Redko 1964]. And as mentioned, Kozen’s complete

axiomatization [Kozen 1994] involves two conditional equations. The proof of completeness relies

on the uniqueness of minimal deterministic finite automata for regular languages and involves

algebraically encoding the determinization and minimization constructions for such automata.

Automating the discovery of such a proof is very difficult and beyond the scope of this paper.

6.3 Implementation and Evaluation
We implemented this instantiation of the framework following the general algorithm in Algorithm 1.

Using this algorithm, we obtain a synthesizer for sound equations over language models with

the operations of concatenation, union, and Kleene star. The implementation can be found in our

GitHub repository [Krogmeier et al. 2022a].

6.3.1 Implementation Details. The implementations of VC, VS, and Cex are based on the SMT

solver Z3 [De Moura and Bjørner 2008]. We discuss their implementation details in this section.

Suppose we have already synthesized a set 𝐴 of (universally-quantified) equations, and suppose

that 𝑡 = 𝑡 ′ is a candidate equation generated by Learner. VC employs the decision procedure

described in Section 6.2 to check the validity of 𝑡 = 𝑡 ′ by checking the equivalence of two regular

expressions representing 𝑡 and 𝑡 ′. We check the equivalence of regular expressions by encoding

an SMT query over the theory of strings and using Z3. If 𝑡 = 𝑡 ′ is not valid, Cex generates a

large enough pseudo-model as described in Definition 6.1. We pre-compute a finite portion of the

canonical model of regular languages with Kleene star corresponding to small regular expressions.

When an axiom cannot be proven valid we look up this pseudo-model for an instantiation that

witnesses the non-validity of the candidate.

For VS, we use a procedure called natural proofs [Löding et al. 2018] to check the entailment

𝐴 |= 𝑡 = 𝑡 ′. Natural proofs are semi-decision procedures for checking the validity of first-order

formulae using systematic quantifier instantiation. VS instantiates 𝐴 with ground terms up to a

certain height and generates an SMT query whose unsatisfiability would imply 𝐴 |= 𝑡 = 𝑡 ′. This
query is a quantifier-free formula over the theory of uninterpreted functions, and hence the SMT

solver is guaranteed to terminate. If the query is satisfiable, it may still be the case that 𝐴 |= 𝑡 = 𝑡 ′,
but we treat it as if 𝑡 = 𝑡 ′ is independent from 𝐴 to avoid missing axioms.

We optimized our algorithm for this domain in our implementation by merging the SMT query

by VS and the SMT query by Learner (line 4 of Algorithm 1). This optimized version is equivalent

to the original algorithm since the core algorithm only proceeds with a candidate equation if both

queries are satisfiable.

6.3.2 Evaluation Results. Recall that our signature is 𝜏 = (·, +, ∗, 1, 0). We ran three passes of the

algorithm to synthesize equations with increasingly larger term grammars:

(1) 𝜏-terms of height 1 with 2 free variables,

(2) 𝜏-terms of height 2 with 2 free variables, and

(3) 𝜏 ′-terms of height 2 with 3 free variables, where 𝜏 ′ is 𝜏 without the constants 0 and 1.

The set of axioms found in each pass is first pruned for redundant axioms that may be entailed

by others in the set. Recall that our independence check using VS only ensures that axioms that

are proposed later are not entailed by those that were proposed earlier; the converse may not be

true. This additional pruning is done using the first-order theorem prover Vampire [Kovács and

Voronkov 2013]. We treat the symbols in the signature as uninterpreted functions and ask whether
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Table 3. Synthesis statistics for language models.

# of Axioms Time (seconds)
Pass New Pruned Synthesis Pruning Cex Total
1 12 3 0.6 0.6 0.4 1.6

2 25 14 136.4 88.4 227.4 452.2

3 12 17 1821.5 70.0 760.2 2651.7

any axioms in the set are entailed by the others. The final set of axioms after pruning in each pass

is used as an initial set of axioms in subsequent passes. Note that in this evaluation we run the core

algorithm (Algorithm 1) multiple times, i.e., once for each pass.

Table 3 presents some statistics about our evaluation, including the number of axioms synthesized

in each pass, the total time taken in each pass, and a breakdown of the time spent per component.

The evaluation was performed on a machine with a 4-core (8-thread) Intel CPU i7-8550U and 16

GB of memory. Our tool synthesizes the following axioms (post pruning after all passes):

(1) 0 = 0𝑏
(2) 0 = 𝑏0
(3) 0

∗ = 1

(4) 0
∗ + 𝑏∗ = (1 + 𝑏)∗

(5) 00 + (𝑎 + 𝑏) = (𝑏 + 𝑎) + 𝑎

(6) (𝑏∗)∗ = 𝑏∗ (𝑏 + 1)
(7) 𝑏∗ + (1 + 𝑏) = 𝑏∗

(8) (𝑎 + 𝑎)𝑎∗ = 𝑎∗𝑎
(9) (1𝑎) (1 + 𝑏) = 𝑎𝑏 + 𝑎
(10) 𝑎 + 𝑎 = 𝑎

(11) (𝑏 + 𝑏)∗ = 𝑏∗𝑏∗

(12) 𝑏+(𝑐+𝑎) = (𝑐+𝑎)+(𝑎+𝑏)
(13) (𝑎𝑐)𝑏 = 𝑎(𝑐𝑏)
(14) (𝑎 + 𝑎) (𝑏 + 𝑐) = 𝑎𝑐 + 𝑎𝑏
(15) 𝑐𝑏 + 𝑎𝑏 = (𝑐 + 𝑎)𝑏

The axioms for this class of models are expected to be similar to those of Kleene algebras from

the literature, and we compared them to Kozen’s axioms [Kozen 1994] (see also [Conway 1971]).

The axioms synthesized by our tool are quite different from these reference axioms. As noted in

Section 6.2, however, Kozen used two kinds of axioms: equations and conditional equations (axioms

formulated as inequalities can be reformulated as equations). Handling soundness for conditional

equations is more complex, and we did not tackle it in this work.

Kozen’s axioms are complete for the equational theory of regular languages under concatenation,

union, and Kleene star (all valid equations are semantically entailed by Kozen’s axioms). Since our

axioms are valid on the same class, Kozen’s axioms imply our axioms by completeness.

On the other direction, it turns out that if we consider only the unconditional equational axioms

in [Kozen 1994, Section 2, Axioms (3) - (15)], then our axioms are stronger. That is, our axioms

imply all of the unconditional equational axioms in [Kozen 1994], but the converse is not true. We

used Vampire [Kovács and Voronkov 2013] to automatically verify that our axioms (3), (4), (6), (8),

and (11) are not implied by the unconditional equational axioms in [Kozen 1994], and Vampire

was able to produce finite counterexample models. This result shows that our technique has the

potential to discover new and useful axioms. The equational axioms discovered in our work may

already have applications; there are several rewrite engines and solvers that use equational axioms

to reason with regular expressions where this expanded set of axioms could be useful.

6.3.3 Comparison with Brute-force Enumeration. Similar to the experiments for modal logics, we

tried to use a brute-force enumerative Learner, instead of a constraint-solving-based one that

learns from counterexamples. The enumerative version took about 25 hours to exhaust the axiom

search space, while our tool took only 50 minutes. The enumeration scanned through ∼10 million

equations with height-2 terms and 2 free variables (corresponding to pass 2), and ∼1.3 million

equations with height-2 terms and 3 free variables (corresponding to pass 3). Note that there are

more equations in pass 2 than in pass 3 because pass 3 does not have constant terms 0 and 1 in the
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signature. Note also that since no finite set of equational axioms can be complete, early termination

on completeness is impossible in this setting. We again conclude that enumerative approaches are

unlikely to scale for axiom synthesis.

7 RELATEDWORK
The axiomatization of logics and classes of structures has a rich history in the mathematical

literature. But the term axiomatization is used to describe many different kinds of problems. To our

knowledge, ours is the first work to study automated axiomatization of classes of structures.

One class of problems rooted in the work of Leśniewski, Tarski, and Łukasiewicz [Łukasiewicz

and Tarski 1930; Rezus 2020; Tarski 1938] is to find simple axioms for algebraic structures (e.g.,

groups) for which axiomatizations are already known. The objective is to find axiomatizations

that are shorter (as short as a single axiom) or that use a different set of operators (e.g., a division

operator for groups). Work by William McCune and contemporaries [Kunen 1992; McCune and

Padmanabhan 1996; McCune et al. 2005, 2003; McCune and Sands 1996; McCune et al. 2002; Mccune

1993; Neumann 1981; Padmanabhan 1969] studies using computers to find simple axiomatizations

for various algebraic structures.

The problem of automated theory discovery or theory exploration has also been studied [Buch-

berger et al. 2006; Drâmnesc et al. 2015; Drămnesc and Jebelean 2012; Johansson 2017; Johansson

et al. 2014; Mccasland et al. 2017; Singher and Itzhaky 2021; Valbuena and Johansson 2015]. In

theory exploration, one has a set of axioms 𝐴 that defines a theory of interest, and the goal is to

find formulae 𝜑 that belong to the theory of 𝐴, i.e., 𝐴 |= 𝜑 , with a preference for finding interesting

or complex theorems, e.g., discovering Sylow theorems given group axioms. The model-theoretic

axiomatization problem can be thought of as a dual problem to theory exploration since it requires

finding axioms given the theory, i.e., to find 𝐴, such that 𝐴 |= 𝜑 for every 𝜑 in the theory of some

class of structures C.
Synthesizing logical formulae from example structures is a fundamental problem that has seen

recent theoretical and practical progress. First-order logic formulae (with quantifiers) have been

used to express invariants and prove correctness for complex distributed protocols [Hance et al. 2021;

Koenig et al. 2020], and synthesis algorithms have been proposed based on either constraint solving

or tree automata emptiness procedures [Koenig et al. 2020; Krogmeier and Madhusudan 2022]. The

Learner component of the LAS framework would benefit from improvements to algorithms for

learning logical formulae.

Also related is the field of program synthesis, especially the Programming By Example (PBE)

paradigm [Gulwani 2011; Polozov and Gulwani 2015]. Many different techniques [Reynolds et al.

2019; Solar Lezama 2008] proposed in the program synthesis literature have proven useful for other

kinds of synthesis problems. Common formats and frameworks for synthesis, like SyGuS [Alur

et al. 2013; Reynolds et al. 2019], and more recently the SemGuS framework [D’Antoni et al. 2021;

Kim et al. 2021], have spurred advances in algorithms for synthesizing expressions over logical

specifications, which LAS can benefit from.

SMT solvers [Barrett et al. 2011; De Moura and Bjørner 2008] provide automated reasoning

for many first-order logics and we use them in our implementation. Improvements in SMT solv-

ing can improve our existing implementation and also inform the design of components in the

LAS framework for new domains. Using first-order theorem provers [Kovács and Voronkov 2013]

in implementing LAS is also an interesting direction to be explored.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we develop (1) a model-theoretic formulation of axiom synthesis, (2) the LAS frame-

work for solving the axiom synthesis problem using computational reasoning, counterexample
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generation, and synthesis components, and (3) an instantiation of the framework and implementa-

tion showing its effectiveness for discovering axioms in the realms of modal logic and the class of

language models. We believe our work opens a new research direction for computers to generate

axiomatizations that were hitherto found by humans. Our framework is, of course, constrained

by the current state-of-the-art in automated reasoning and expression synthesis. However, it will

grow more effective as techniques for these areas evolve and improve in the future.

We believe the LAS framework has many interesting applications. A key future direction is to

explore applications of axiom synthesis that serve a purpose beyond the current state-of-the-art.

One possibility would be to explore axiom synthesis in a domain that has not been axiomatized by

humans so far. The second possibility would be to use LAS to alleviate the burden of finding axioms

in situations where the problem is tedious and perhaps not interesting to a human. For example, the

semantics of CPU instruction sets can be seen as a logic with intricate semantics that can change

frequently (see [Heule et al. 2016] for work on synthesizing semantics of such instruction sets). We

can find equational axioms to express one set of instructions in terms of another, which can help

in finding constant-time implementations that avoid timing attacks (e.g. [Dinesh et al. 2022]). As

another example, we can learn axioms that aid in downstream verification tasks, e.g., one of our

anonymous reviewers pointed out recent work on proving the equivalence of database programs

that involved a manual axiomatization of the theory of relational algebra with updates [Wang et al.

2018]. In this domain, one can imagine using a reference implementation as the soundness checker

VC and using a weaker logic such as the theory of uninterpreted functions to build VS. However,
counterexample generation and, more importantly, the right grammar for synthesizing axioms is

unclear. Yet another application is to learn axioms to aid in metamorphic testing, where program

modules are tested against sequences or compositions of function calls (e.g. 𝑓 (𝑥,𝑦) = 𝑓 (𝑦, 𝑥) may

be known to be true, even though the functional specification of 𝑓 is hard to write). The axioms

in this case (e.g. equational specifications) can be used to test other implementations (the work

in [Smith et al. 2017] explores similar ideas). In these examples, the class C consists of a single

structure corresponding to a reference implementation for the operations, and VC can find proofs

of soundness against the reference implementation (or simply resort to testing).

These examples would use LAS as a means to an end, e.g. synthesis, verification, or testing.

Another class of applications would use LAS in settings where axiomatization is an end goal in itself.

For instance, we could try to discover properties or laws about a complex system by manipulating it

and observing how it behaves, similar to work on the Bacon system that re-discovered simple laws

of physics from observed data [Langley 1981], or more recent work on predicting the motion of

objects in complex artificial environments [Wu and Tegmark 2019]. In such settings, the target class

can be thought of as a single structure. But since the system may not be fully known or analyzable

we must resort to testing rather than proofs of soundness. Applying the technique of this paper to

discover interpretable axioms in such domains would also be interesting.

DATA AVAILABILITY STATEMENT
We have prepared a publicly available Docker image [Krogmeier et al. 2022b] for reproducing our

evaluations in Sections 5.3 and 6.3.
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